-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathofb.py
258 lines (217 loc) · 9.6 KB
/
ofb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
"""
Train the SFN baseline model (without temporal loss)
"""
import numpy as np
import argparse, sys, os, time, glob
import torch
from torch.functional import F
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
import dataset
from torchvision import transforms
from torch.functional import F
import utils
import transformer_net
from vgg16 import Vgg16
from flow_vis import flow_to_color
def weighted_mse(x, y, conf):
diff = (x - y) * conf
diff = diff * diff
return diff.sum() / conf.sum()
def warp(x, flo):
"""
warp an image/tensor (im2) back to im1, according to the optical flow
x: [B, C, H, W] (im2)
flo: [B, 2, H, W] flow
"""
B, C, H, W = x.size()
# mesh grid
xx = torch.arange(0, W).view(1,-1).repeat(H,1)
yy = torch.arange(0, H).view(-1,1).repeat(1,W)
xx = xx.view(1,1,H,W).repeat(B,1,1,1)
yy = yy.view(1,1,H,W).repeat(B,1,1,1)
grid = torch.cat((xx,yy),1).float()
if x.is_cuda:
grid = grid.cuda()
vgrid = grid + flo
# scale grid to [-1,1]
vgrid[:,0,:,:] = 2.0*vgrid[:,0,:,:].clone() / max(W-1,1)-1.0
vgrid[:,1,:,:] = 2.0*vgrid[:,1,:,:].clone() / max(H-1,1)-1.0
vgrid = vgrid.permute(0,2,3,1)
output = F.grid_sample(x, vgrid)
mask = F.grid_sample(torch.ones_like(x), vgrid)
mask[mask < 0.9999] = 0
mask[mask > 0] = 1
return output, mask
def train(args):
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
kwargs = {'num_workers': 0, 'pin_memory': False}
else:
kwargs = {}
if args.model_type == "rnn":
transformer = transformer_net.TransformerRNN(args.pad_type)
seq_size = 4
else:
transformer = transformer_net.TransformerNet(args.pad_type)
seq_size = 2
train_dataset = dataset.DAVISDataset(args.dataset, "train",
seq_size=seq_size, no_flow=False)
train_loader = DataLoader(train_dataset,
shuffle=True, batch_size=1, **kwargs)
if args.model_type == "rnn":
transformer = transformer_net.TransformerRNN(args.pad_type)
else:
transformer = transformer_net.TransformerNet(args.pad_type)
model_path = args.init_model
print("=> Load from model file %s" % model_path)
transformer.load_state_dict(torch.load(model_path))
transformer.train()
if args.model_type == "rnn":
transformer.conv1 = transformer_net.ConvLayer(6, 32, kernel_size=9, stride=1, pad_type=args.pad_type)
optimizer = torch.optim.Adam(transformer.parameters(), args.lr)
mse_loss = torch.nn.MSELoss()
vgg = Vgg16()
vgg.load_state_dict(torch.load(os.path.join(
args.vgg_model_dir, "vgg16.weight")))
vgg.eval()
if args.cuda:
transformer.cuda()
vgg.cuda()
mse_loss.cuda()
style = utils.tensor_load_resize(args.style_image, args.style_size)
style = style.unsqueeze(0)
print("=> Style image size: " + str(style.size()))
print("=> Pixel OFB loss weight: %f" % args.time_strength)
style = utils.preprocess_batch(style)
if args.cuda: style = style.cuda()
utils.tensor_save_bgrimage(style[0].detach(), os.path.join(args.save_model_dir, 'train_style.jpg'), args.cuda)
style = utils.subtract_imagenet_mean_batch(style)
features_style = vgg(style)
gram_style = [utils.gram_matrix(y).detach()
for y in features_style]
iters = 0
for e in range(args.epochs):
transformer.train()
transformer.cuda()
for batch_id, (x, flow, occ, _) in enumerate(train_loader):
x, flow, occ = x[0], flow[0], occ[0]
iters += 1
x = utils.preprocess_batch(x) # (N, 3, 256, 256)
flow = utils.factor4_crop(flow)
occ = utils.factor4_crop(occ)
if args.cuda:
x, flow, occ = x.cuda(), flow.cuda(), occ.cuda()
y = transformer(x) # (N, 3, 256, 256)
vgg_y = utils.subtract_imagenet_mean_batch(y)
vgg_x = utils.subtract_imagenet_mean_batch(x)
f_y = vgg(vgg_y)
f_c = f_y[2]
with torch.no_grad():
f_x = vgg(vgg_x)
f_xc_c = f_x[2]
content_loss = args.content_weight * mse_loss(f_c, f_xc_c)
style_loss = 0.
for m in range(len(f_y)):
gram_s = gram_style[m]
gram_y = utils.gram_matrix(f_y[m])
batch_style_loss = 0
for n in range(gram_y.shape[0]):
batch_style_loss += args.style_weight * mse_loss(
gram_y[n], gram_s[0])
style_loss += batch_style_loss / gram_y.shape[0]
warped_y, mask = warp(y[1:], flow)
warped_y = warped_y.detach()
mask *= occ
pixel_ofb_loss = args.time_strength * weighted_mse(
y[:-1], warped_y, mask)
total_loss = content_loss + style_loss + pixel_ofb_loss
total_loss.backward()
optimizer.step()
optimizer.zero_grad()
if (iters + 1) % 100 == 0:
prefix = args.save_model_dir
idx = (iters + 1) // 100
for i in range(x.shape[0]):
utils.tensor_save_bgrimage(
y.data[i], f"{prefix}/out_{idx}-{i}.png", args.cuda)
utils.tensor_save_bgrimage(
x.data[i], f"{prefix}/in_{idx}-{i}.png", args.cuda)
if i < flow.shape[0]:
flow_image = flow_to_color(
flow.data[i].cpu().numpy().transpose(1,2,0))
utils.save_image(f"{prefix}/forward_flow_{idx}-{i}.png", flow_image)
warped_x, _ = warp(x[i+1:i+2], flow[i:i+1])
utils.tensor_save_bgrimage(
warped_y.data[0], f"{prefix}/wout_{idx}-{i}.png", args.cuda)
utils.tensor_save_bgrimage(
warped_x.data[0], f"{prefix}/win_{idx}-{i}.png", args.cuda)
utils.tensor_save_image(f"{prefix}/conf_{idx}-{i}.png", mask.data[0])
mesg = "{}\tEpoch {}:\t[{}/{}]\tcontent: {:.6f}\tstyle: {:.6f}\tpixel ofb: {:.6f}\ttotal: {:.6f}".format(
time.ctime(), e + 1, batch_id + 1, len(train_loader),
content_loss, style_loss, pixel_ofb_loss, total_loss)
print(mesg)
# save model
transformer.eval()
transformer.cpu()
save_model_filename = "epoch_" + str(e) + "_" + str(args.content_weight) + "_" + str(args.style_weight) + ".model"
save_model_path = os.path.join(args.save_model_dir, save_model_filename)
torch.save(transformer.state_dict(), save_model_path)
print("\nDone, trained model saved at", save_model_path)
def check_paths(args):
try:
if not os.path.exists(args.save_model_dir):
os.makedirs(args.save_model_dir)
except OSError as e:
print(e)
sys.exit(1)
def main():
main_arg_parser = argparse.ArgumentParser(description="parser for fast-neural-style (FDB)")
subparsers = main_arg_parser.add_subparsers(title="subcommands", dest="subcommand")
train_arg_parser = subparsers.add_parser("train",
help="parser for training arguments")
train_arg_parser.add_argument("--time-strength", type=float, default=400.0,
help="OFB loss weight.")
train_arg_parser.add_argument("--init-model", type=str, default="",
help="model dir")
train_arg_parser.add_argument("--model-type", type=str, default="rnn", # rnn | sfn
help="model dir")
train_arg_parser.add_argument("--pad-type", type=str, default="reflect-start", # rnn | sfn
help="reflect-start|none")
train_arg_parser.add_argument("--epochs", type=int, default=1,
help="number of training epochs, default is 1")
train_arg_parser.add_argument("--dataset", type=str,
default="data/DAVIS",
help="path to training dataset, the path should point to a folder "
"containing another folder with all the training images")
train_arg_parser.add_argument("--style-image", type=str, default="data/styles/starry_night.jpg",
help="path to style-image")
train_arg_parser.add_argument("--vgg-model-dir", type=str, default="pretrained",
help="directory for vgg, if model is not present in the directory it is downloaded")
train_arg_parser.add_argument("--save-model-dir", type=str, default="exprs",
help="path to folder where trained model will be saved.")
train_arg_parser.add_argument("--image-size", type=int, default=400,
help="size of training images, default is 256 X 256")
train_arg_parser.add_argument("--style-size", type=int, default=400,
help="size of style-image, default is the original size of style image")
train_arg_parser.add_argument("--cuda", type=int, default=1, help="set it to 1 for running on GPU, 0 for CPU")
train_arg_parser.add_argument("--seed", type=int, default=1234, help="random seed for training")
train_arg_parser.add_argument("--content-weight", type=float, default=1.0,
help="weight for content-loss, default is 1.0")
train_arg_parser.add_argument("--style-weight", type=float, default=10.0,
help="weight for style-loss, default is 10.0")
train_arg_parser.add_argument("--lr", type=float, default=1e-4,
help="learning rate, default is 0.001")
train_arg_parser.add_argument("--log-interval", type=int, default=100,
help="number of images after which the training loss is logged, default is 100")
args = main_arg_parser.parse_args()
if args.subcommand is None:
print("ERROR: specify either train or eval")
sys.exit(1)
if args.subcommand == "train":
check_paths(args)
train(args)
if __name__ == "__main__":
main()