We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
if self.two_stage: output_memory, output_proposals = self.gen_encoder_output_proposals(memory, mask_flatten, spatial_shapes) # hack implementation for two-stage Deformable DETR enc_outputs_class = self.decoder.class_embed[self.decoder.num_layers](output_memory) enc_outputs_coord_unact = self.decoder.bbox_embed[self.decoder.num_layers](output_memory) + output_proposals topk = self.two_stage_num_proposals topk_proposals = torch.topk(enc_outputs_class[..., 0], topk, dim=1)[1] topk_coords_unact = torch.gather(enc_outputs_coord_unact, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4)) topk_coords_unact = topk_coords_unact.detach() reference_points = topk_coords_unact.sigmoid() init_reference_out = reference_points pos_trans_out = self.pos_trans_norm(self.pos_trans(self.get_proposal_pos_embed(topk_coords_unact))) query_embed, tgt = torch.split(pos_trans_out, c, dim=2) else: query_embed, tgt = torch.split(query_embed, c, dim=1) query_embed = query_embed.unsqueeze(0).expand(bs, -1, -1) tgt = tgt.unsqueeze(0).expand(bs, -1, -1) reference_points = self.reference_points(query_embed).sigmoid() init_reference_out = reference_points # decoder hs, inter_references = self.decoder(tgt, reference_points, memory, spatial_shapes, level_start_index, valid_ratios, query_embed, mask_flatten) inter_references_out = inter_references if self.two_stage: return hs, init_reference_out, inter_references_out, enc_outputs_class, enc_outputs_coord_unact, output_proposals.sigmoid() return hs, init_reference_out, inter_references_out, None, None, output_proposals.sigmoid()
The text was updated successfully, but these errors were encountered:
Sorry, something went wrong.
"Two_stage" is the default training setting. The problem you mentioned is due to the lack of "--two_stage" in your training script.
If you want to stick with the "non two_stage" setting, just modify output_proposals.sigmoid() to None
output_proposals.sigmoid()
None
No branches or pull requests
The text was updated successfully, but these errors were encountered: