-
Notifications
You must be signed in to change notification settings - Fork 1
/
demo_decode.py
142 lines (115 loc) · 5.5 KB
/
demo_decode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import os
import argparse
import numpy as np
from PIL import Image
import torch
import torch.nn as nn
def carte_to_geg(x, N_freqs, alpha=0.5):
n = x.shape[0]
c = np.zeros(( n, N_freqs + 1 ))
c[:, 0] = 1.0
c[:, 1] = 2.0 * alpha * x
for i in range(2, N_freqs + 1 ):
c[:, i] = ( ( 2 * i - 2 + 2.0 * alpha ) * x * c[:, i-1] + (- i + 2 - 2.0 * alpha ) * c[:, i-2] ) / i
return c[:, 1:]
class Embedding(nn.Module):
def __init__(self, N_freqs, n_size, alpha=0.5):
super(Embedding, self).__init__()
self.N_freqs = N_freqs
self.alpha = alpha
x = np.linspace(-0.5, 0.5, n_size)
#x = np.linspace(-1, 1, n_size)
self.cache_geg = nn.Parameter(torch.from_numpy(carte_to_geg(x, N_freqs, alpha)).float(), requires_grad=False)
def forward(self, x):
return self.cache_geg[x.long()]
class SineLayer(nn.Module):
def __init__(self, in_features, out_features, bias=True, is_first=False, is_res=False, omega_0=30):
super().__init__()
self.omega_0 = omega_0
self.is_first = is_first
self.is_res = is_res
self.in_features = in_features
self.linear = nn.Linear(in_features, out_features, bias=bias)
self.init_weights(self.linear)
def init_weights(self, layer):
with torch.no_grad():
if self.is_first:
layer.weight.uniform_(-1 / self.in_features,
1 / self.in_features)
else:
layer.weight.uniform_(-np.sqrt(6 / self.in_features) / self.omega_0,
np.sqrt(6 / self.in_features) / self.omega_0)
def forward(self, input):
if self.is_res:
return input + torch.sin(self.omega_0 * self.linear(input))
else:
return torch.sin(self.omega_0 * self.linear(input))
class SIGNET(nn.Module):
def __init__(self, first_omega_0=30, hidden_omega_0=30., hidden_layers=8, in_feature_ratio=1, out_features=3,
hidden_features=512, alpha=0.5, with_res=False, with_norm=False):
super().__init__()
in_features = int(in_feature_ratio * 512)
self.with_res = with_res
self.D = hidden_layers + 2
for i in range(hidden_layers+1):
if i == 0:
layer = SineLayer(in_features, hidden_features, is_first=True, is_res=False, omega_0=first_omega_0)
else:
layer = SineLayer(hidden_features, hidden_features, is_first=False, is_res=self.with_res, omega_0=hidden_omega_0)
if with_norm:
layer = nn.Sequential(layer, nn.LayerNorm(hidden_features, elementwise_affine=True))
setattr(self, f"encoding_{i+1}", layer)
final_linear = nn.Linear(hidden_features, out_features)
with torch.no_grad():
final_linear.weight.uniform_(-np.sqrt(6 / hidden_features) / hidden_omega_0, np.sqrt(6 / hidden_features) / hidden_omega_0)
setattr(self, f"encoding_{hidden_layers+2}", final_linear)
self.N_xy = int(in_feature_ratio * (240))
self.N_uv = int(in_feature_ratio * (16))
self.xy_embedd = Embedding(self.N_xy, 1024, alpha)
self.uv_embedd = Embedding(self.N_uv, 17, alpha)
def forward(self, x):
emb_x = torch.cat( [self.uv_embedd(x[:, 0]), self.uv_embedd(x[:, 1]), self.xy_embedd(x[:, 2]), self.xy_embedd(x[:, 3]) ], axis=1).to(x.device)
out = emb_x
for i in range(self.D):
out = getattr(self, f"encoding_{i+1}")(out)
return out
def get_LF_val(u, v, width=1024, height=1024):
x = np.linspace(0, width-1, width)
y = np.linspace(0, height-1, height)
xv, yv = np.meshgrid(y, x)
img_grid = torch.from_numpy(np.stack([yv, xv], axis=-1))
uv_grid = torch.ones_like(img_grid)
uv_grid[:, :, 0], uv_grid[:, :, 1] = u, v
val_inp_t = torch.cat([uv_grid, img_grid], dim = -1).float()
del img_grid, xv, yv
return val_inp_t.view(-1, val_inp_t.shape[-1])
def eval_im(val_inp_t, batches, device):
b_size = val_inp_t.shape[0] // batches
with torch.no_grad():
out = []
for b in range(batches):
out.append(model(val_inp_t[b_size*b:b_size*(b+1)].to(device)))
out = torch.cat(out, dim = 0)
out = torch.clamp(out, 0, 1)
out_np = out.view(1024, 1024, 3).cpu().numpy() * 255
return out_np
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-u", type=int, default=0, help="angular dimension u")
parser.add_argument("-v", type=int, default=0, help="angular dimension v")
parser.add_argument("-b", type=int, default=4, help="batch size in inference")
parser.add_argument("--scene", type=str, default="lego", help="lego or tarot")
args = parser.parse_args()
OUT_DIR = f'./decoded_images/{args.scene}'
if not os.path.exists(OUT_DIR):
os.makedirs(OUT_DIR)
args = parser.parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = SIGNET(hidden_layers=8, alpha=0.5, hidden_features=512, in_feature_ratio=1, with_norm=True, with_res=True)
m_state_dict = torch.load(f'./encoded_weights/model_{args.scene}.pth')
model.load_state_dict(m_state_dict)
model.eval()
model = model.to(device)
val_inp_t = get_LF_val(u=args.u, v=args.v).to(device)
out_np = eval_im(val_inp_t, args.b, device)
Image.fromarray(np.uint8(out_np)).save(f'{OUT_DIR}/%s_u%d_v%d.png' % (args.scene, args.u, args.v))