-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
executable file
·287 lines (256 loc) · 9.92 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
#!/usr/bin/env python
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import yaml
import ray
from ray.tests.cluster_utils import Cluster
from ray.tune.config_parser import make_parser
from ray.tune.result import DEFAULT_RESULTS_DIR
from ray.tune.resources import resources_to_json
from ray.tune.tune import _make_scheduler, run_experiments
EXAMPLE_USAGE = """
Training example via RLlib CLI:
rllib train --run DQN --env CartPole-v0
Grid search example via RLlib CLI:
rllib train -f tuned_examples/cartpole-grid-search-example.yaml
Grid search example via executable:
./train.py -f tuned_examples/cartpole-grid-search-example.yaml
Note that -f overrides all other trial-specific command-line options.
"""
# additional libraries for dynamic experience replay
from ray.tune.registry import register_env, register_trainable
from ray.rllib.agents.registry import get_agent_class
import os
import random
import envs_launcher
import utilities as util
import shutil
from collections import deque
import pickle
#========================================
# Callback functions
# for (1) custom metric -> success rate,
# (2) for save successful robot demos
#========================================
def on_episode_start(info):
episode = info["episode"]
episode.user_data["success"] = 0
def on_episode_step(info):
pass
def on_episode_end(info):
episode = info["episode"]
if len(episode.last_info_for().values()) > 0:
episode.user_data["success"] = list(episode.last_info_for().values())[0]
episode.custom_metrics["successful_rate"] = episode.user_data["success"]
def on_sample_end(info):
pass
def on_postprocess_traj(info):
pass
# if list(info["episode"].last_info_for().values())[0] > 0:
# save_episode(info["post_batch"])
def on_train_result(info):
if "successful_rate_mean" in info["result"]["custom_metrics"]:
info["result"]["successful_rate"] = info["result"]["custom_metrics"]["successful_rate_mean"]
def save_episode(samples):
memory = deque()
for row in samples.rows():
obs = row["obs"]
action = row["actions"]
reward = row["rewards"]
new_obs = row["new_obs"]
done = row["dones"]
memory.append((obs, action, reward, new_obs, done))
# save transitions
file_name = dir_path + str(random.random())
out_file = open(file_name, 'wb')
pickle.dump(memory, out_file)
out_file.close()
util.prGreen("A successful transition is saved, length {}".format(len(memory)))
def get_task_path(yaml_file):
with open(yaml_file) as f:
experiments = yaml.safe_load(f)
experiment_name = next(iter(experiments))
dir_path = experiments[experiment_name]["local_dir"]
dir_path = os.path.expanduser(dir_path)
dir_path = os.path.join(dir_path, experiment_name) + "/robot_demos/"
if not os.path.exists(dir_path):
os.makedirs(dir_path)
else:
shutil.rmtree(dir_path)
os.makedirs(dir_path)
return dir_path
#======================================
# End of Callback functions
#======================================
def create_parser(parser_creator=None):
parser = make_parser(
parser_creator=parser_creator,
formatter_class=argparse.RawDescriptionHelpFormatter,
description="Train a reinforcement learning agent.",
epilog=EXAMPLE_USAGE)
# See also the base parser definition in ray/tune/config_parser.py
parser.add_argument(
"--ray-address",
default=None,
type=str,
help="Connect to an existing Ray cluster at this address instead "
"of starting a new one.")
parser.add_argument(
"--ray-num-cpus",
default=None,
type=int,
help="--num-cpus to use if starting a new cluster.")
parser.add_argument(
"--ray-num-gpus",
default=None,
type=int,
help="--num-gpus to use if starting a new cluster.")
parser.add_argument(
"--ray-num-nodes",
default=None,
type=int,
help="Emulate multiple cluster nodes for debugging.")
parser.add_argument(
"--ray-redis-max-memory",
default=None,
type=int,
help="--redis-max-memory to use if starting a new cluster.")
parser.add_argument(
"--ray-memory",
default=None,
type=int,
help="--memory to use if starting a new cluster.")
parser.add_argument(
"--ray-object-store-memory",
default=None,
type=int,
help="--object-store-memory to use if starting a new cluster.")
parser.add_argument(
"--experiment-name",
default="default",
type=str,
help="Name of the subdirectory under `local_dir` to put results in.")
parser.add_argument(
"--local-dir",
default=DEFAULT_RESULTS_DIR,
type=str,
help="Local dir to save training results to. Defaults to '{}'.".format(
DEFAULT_RESULTS_DIR))
parser.add_argument(
"--upload-dir",
default="",
type=str,
help="Optional URI to sync training results to (e.g. s3://bucket).")
parser.add_argument(
"--resume",
action="store_true",
help="Whether to attempt to resume previous Tune experiments.")
parser.add_argument(
"--eager",
action="store_true",
help="Whether to attempt to enable TF eager execution.")
parser.add_argument(
"--trace",
action="store_true",
help="Whether to attempt to enable tracing for eager mode.")
parser.add_argument(
"--env", default=None, type=str, help="The gym environment to use.")
parser.add_argument(
"--queue-trials",
action="store_true",
help=(
"Whether to queue trials when the cluster does not currently have "
"enough resources to launch one. This should be set to True when "
"running on an autoscaling cluster to enable automatic scale-up."))
parser.add_argument(
"-f",
"--config-file",
default=None,
type=str,
help="If specified, use config options from this file. Note that this "
"overrides any trial-specific options set via flags above.")
return parser
def run(args, parser):
if args.config_file:
with open(args.config_file) as f:
experiments = yaml.safe_load(f)
# add callbacks for self-defined metric
# and save successful transitions from RL agents
experiment_name = next(iter(experiments))
experiments[experiment_name]["config"]["optimizer"]["robot_demo_path"] = dir_path
experiments[experiment_name]["config"]["callbacks"] = {
"on_episode_start": on_episode_start,
"on_episode_step": on_episode_step,
"on_episode_end": on_episode_end,
"on_sample_end": on_sample_end,
"on_train_result": on_train_result,
"on_postprocess_traj": on_postprocess_traj
}
else:
# Note: keep this in sync with tune/config_parser.py
experiments = {
args.experiment_name: { # i.e. log to ~/ray_results/default
"run": args.run,
"checkpoint_freq": args.checkpoint_freq,
"keep_checkpoints_num": args.keep_checkpoints_num,
"checkpoint_score_attr": args.checkpoint_score_attr,
"local_dir": args.local_dir,
"resources_per_trial": (
args.resources_per_trial and
resources_to_json(args.resources_per_trial)),
"stop": args.stop,
"config": dict(args.config, env=args.env),
"restore": args.restore,
"num_samples": args.num_samples,
"upload_dir": args.upload_dir,
}
}
for exp in experiments.values():
if not exp.get("run"):
parser.error("the following arguments are required: --run")
if not exp.get("env") and not exp.get("config", {}).get("env"):
parser.error("the following arguments are required: --env")
if args.eager:
exp["config"]["eager"] = True
if args.trace:
if not exp["config"].get("eager"):
raise ValueError("Must enable --eager to enable tracing.")
exp["config"]["eager_tracing"] = True
if args.ray_num_nodes:
cluster = Cluster()
for _ in range(args.ray_num_nodes):
cluster.add_node(
num_cpus=args.ray_num_cpus or 1,
num_gpus=args.ray_num_gpus or 0,
object_store_memory=args.ray_object_store_memory,
memory=args.ray_memory,
redis_max_memory=args.ray_redis_max_memory)
ray.init(address=cluster.address) #, log_to_driver=False)
else:
ray.init(
address=args.ray_address,
object_store_memory=args.ray_object_store_memory,
memory=args.ray_memory,
redis_max_memory=args.ray_redis_max_memory,
num_cpus=args.ray_num_cpus,
num_gpus=args.ray_num_gpus)
# log_to_driver=False) # disable the loggings
# https://github.com/ray-project/ray/issues/5048
run_experiments(
experiments,
scheduler=_make_scheduler(args),
queue_trials=args.queue_trials,
resume=args.resume)
if __name__ == "__main__":
parser = create_parser()
args = parser.parse_args()
random.seed(12345)
# register customized envs
register_env("ROBOTIC_ASSEMBLY", envs_launcher.env_creator)
# register customized algorithms
# register_trainable("APEX_DDPG_DEMO", get_agent_class("contrib/APEX_DDPG_DEMO"))
# get the path for saving robot demos
dir_path = get_task_path(args.config_file)
run(args, parser)