-
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstyle.py
216 lines (170 loc) · 6.75 KB
/
style.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
"""
Email: autuanliu@163.com
Date: 2018/9/25
Ref: https://pytorch.org/tutorials/advanced/neural_style_tutorial.html
"""
import copy
import os
import matplotlib.pyplot as plt
import torch
import torch.nn.functional as F
from PIL import Image
from torch import nn, optim
from torchvision import models, transforms, utils
# 定义运行程序的设备
dev = torch.device('cuda: 0' if torch.cuda.is_available() else 'cpu')
imsize = 512 if torch.cuda.is_available() else 128
tsfm = transforms.Compose([
transforms.Resize(imsize),
transforms.ToTensor()
])
def img_loader(img_name):
if os.path.exists(img_name):
image = Image.open(img_name)
image = tsfm(image).unsqueeze(0)
return image.to(dev, torch.float)
style_img = img_loader('images/picasso.jpg')
content_img = img_loader('images/dancing.jpg')
assert style_img.size() == content_img.size(), "we need to import style and content images of the same size"
unloader = transforms.ToPILImage()
def imshow(tensor, title=None):
image = tensor.cpu().clone() # we clone the tensor to not do changes on it
image = image.squeeze(0) # remove the fake batch dimension
image = unloader(image)
plt.imshow(image)
if title is not None:
plt.title(title)
plt.pause(0.001) # pause a bit so that plots are updated
# 定义内容损失
class ContentLoss(nn.Module):
def __init__(self, target):
super(ContentLoss, self).__init__()
self.target = target.detach()
def forward(self, x):
self.loss = F.mse_loss(x, self.target)
return x
def gram_matrix(x):
a, b, c, d = x.size()
# a=batch size(=1)
# b=number of feature maps
# (c,d)=dimensions of a feature map (N=c*d)
features = x.view(a*b, c*d)
G = torch.mm(features, features.t())
return G.div(a*b*c*d)
# 定义风格损失
class StyleLoss(nn.Module):
def __init__(self, target):
super(StyleLoss, self).__init__()
self.target = gram_matrix(target).detach()
def forward(self, input):
G = gram_matrix(input)
self.loss = F.mse_loss(G, self.target)
return input
# 定义模型
cnn = models.vgg19(pretrained=True).features.to(dev).eval()
# VGG networks are trained on images with each channel normalized by mean=[0.485, 0.456, 0.406] and std=[0.229, 0.224, 0.225]
mean1 = torch.tensor([0.485, 0.456, 0.406]).to(dev)
std1 = torch.tensor([0.229, 0.224, 0.225]).to(dev)
class Normal(nn.Module):
def __init__(self, mean, std):
super(Normal, self).__init__()
self.mean = torch.tensor(mean).view(-1, 1, 1)
self.std = torch.tensor(std).view(-1, 1, 1)
def forward(self, x):
return (x - self.mean) / self.std
# desired depth layers to compute style/content losses
content_layers_default = ['conv_4']
style_layers_default = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5']
def get_style_model_and_losses(cnn, normalization_mean, normalization_std, style_img, content_img, content_layers=content_layers_default, style_layers=style_layers_default):
cnn = copy.deepcopy(cnn)
# normalization module
normalization = Normal(mean1, std1).to(dev)
content_losses = []
style_losses = []
# assuming that cnn is a nn.Sequential, so we make a new nn.Sequential
# to put in modules that are supposed to be activated sequentially
model = nn.Sequential(normalization)
i = 0 # increment every time we see a conv
for layer in cnn.children():
if isinstance(layer, nn.Conv2d):
i += 1
name = f'conv_{i}'
elif isinstance(layer, nn.ReLU):
name = f'relu_{i}'
# The in-place version doesn't play very nicely with the ContentLoss
# and StyleLoss we insert below. So we replace with out-of-place
# ones here.
layer = nn.ReLU(inplace=False)
elif isinstance(layer, nn.MaxPool2d):
name = f'pool_{i}'
elif isinstance(layer, nn.BatchNorm2d):
name = f'bn_{i}'
else:
raise RuntimeError(f'Unrecognized layer: {layer.__class__.__name__}')
model.add_module(name, layer)
if name in content_layers:
# add content loss:
target = model(content_img).detach()
content_loss = ContentLoss(target)
model.add_module(f'content_loss_{i}', content_loss)
content_losses.append(content_loss)
if name in style_layers:
# add style loss:
target_feature = model(style_img).detach()
style_loss = StyleLoss(target_feature)
model.add_module(f'style_loss_{i}', style_loss)
style_losses.append(style_loss)
# now we trim off the layers after the last content and style losses
for i in range(len(model) - 1, -1, -1):
if isinstance(model[i], ContentLoss) or isinstance(model[i], StyleLoss):
break
model = model[:(i + 1)]
return model, style_losses, content_losses
input_img = content_img.clone()
def get_input_optimizer(input_img):
optimizer = optim.LBFGS([input_img.requires_grad_()])
return optimizer
def run_style_transfer(cnn, normalization_mean, normalization_std, content_img, style_img, input_img, num_steps=300, style_weight=1000000, content_weight=1):
model, style_losses, content_losses = get_style_model_and_losses(
cnn, normalization_mean, normalization_std, style_img, content_img)
optimizer = get_input_optimizer(input_img)
run = [0]
while run[0] <= num_steps:
def closure():
# correct the values of updated input image
input_img.data.clamp_(0, 1)
optimizer.zero_grad()
model(input_img)
style_score = 0
content_score = 0
for sl in style_losses:
style_score += sl.loss
for cl in content_losses:
content_score += cl.loss
style_score *= style_weight
content_score *= content_weight
loss = style_score + content_score
loss.backward()
run[0] += 1
if run[0] % 50 == 0:
print(f'run {run}\nStyle Loss : {style_score.item():4f} Content Loss: {content_score.item():4f}')
return style_score + content_score
optimizer.step(closure)
# a last correction...
input_img.data.clamp_(0, 1)
return input_img
output = run_style_transfer(
cnn, mean1, std1, content_img, style_img, input_img)
plt.figure(1)
imshow(style_img, title='Style Image')
plt.figure(2)
imshow(content_img, title='Content Image')
plt.figure(3)
imshow(output)
plt.show()
# 保存结果(使用pillow的方式)
# image1 = output.cpu().clone().squeeze(0)
# image1 = unloader(image1)
# image1.save('images/res.jpg', 'JPEG')
# 保存结果(使用 torchvision 的方式)
utils.save_image(output, 'images/res.jpg')