You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I tested the pretrained model for zero-shot img2text and text2img retrieval on flickr30k-cn validation set. The bboxes are obtained as indicated in https://github.com/chuhaojin/BriVL-BUA-applications. For each image, we only select the one caption with the highest fluency score. However, the recall@1 for the two task is only 15.93% and 13.74%, respectively. The same evaluation for ViLT reaches 73.2% and 55.0%. I'm wondering whether you test on this dataset? Any comments on my results?
Hi, there are many reasons: 1. Our model is pre-trained on weak semantic correlation data crawled from the web while ViLT is pre-trained on strong semantic correlation data. Flickr30K is also a strong correlation dataset. 2. The translation of Flickr30K inevitably brings negative effects.
Hi, thanks for the great work!
I tested the pretrained model for zero-shot img2text and text2img retrieval on flickr30k-cn validation set. The bboxes are obtained as indicated in https://github.com/chuhaojin/BriVL-BUA-applications. For each image, we only select the one caption with the highest fluency score. However, the recall@1 for the two task is only 15.93% and 13.74%, respectively. The same evaluation for ViLT reaches 73.2% and 55.0%. I'm wondering whether you test on this dataset? Any comments on my results?
p.s. An example json file of the dataset is as follows
{"sentences": [["0", "一个小男孩正在玩呼啦圈。"]], "bbox": [[78, 92, 183, 124], [179, 137, 363, 214], [68, 21, 170, 101], [73, 326, 206, 498], [338, 150, 379, 187], [0, 305, 363, 396], [105, 273, 179, 342], [30, 32, 261, 483], [89, 192, 130, 210], [12, 155, 389, 498], [173, 150, 192, 167], [17, 134, 237, 353], [10, 341, 389, 496], [90, 76, 170, 169], [29, 118, 282, 363], [17, 357, 339, 402], [129, 133, 152, 155], [6, 423, 78, 498], [97, 231, 138, 250], [74, 22, 174, 175], [165, 167, 197, 191], [34, 77, 242, 494], [316, 145, 341, 197], [33, 167, 164, 323], [294, 1, 382, 19], [199, 8, 382, 158], [15, 385, 389, 497], [1, 366, 379, 396], [179, 126, 371, 228], [204, 13, 379, 130], [57, 23, 189, 235], [59, 71, 230, 482], [55, 23, 203, 167], [44, 29, 213, 248], [61, 27, 210, 219], [32, 124, 264, 367], [44, 39, 236, 286], [18, 326, 338, 445], [198, 383, 389, 496], [61, 344, 209, 498], [95, 269, 186, 340], [46, 302, 331, 471], [19, 123, 344, 307], [11, 14, 374, 409], [31, 132, 234, 357], [20, 134, 271, 354], [16, 10, 358, 360], [32, 20, 297, 478], [39, 19, 206, 157], [2, 330, 62, 443], [29, 168, 175, 331], [153, 312, 389, 404], [2, 408, 272, 498], [0, 328, 347, 467], [317, 148, 349, 197], [35, 302, 227, 458], [38, 143, 229, 366], [11, 367, 385, 492], [191, 320, 380, 389], [323, 148, 347, 199], [61, 324, 244, 498], [79, 0, 385, 495], [47, 143, 222, 355], [6, 0, 389, 221], [0, 367, 377, 407], [0, 194, 389, 498], [103, 123, 356, 222], [14, 7, 222, 183], [20, 4, 389, 164], [0, 286, 389, 497], [14, 4, 191, 132], [21, 331, 308, 438], [59, 118, 352, 219], [70, 88, 181, 128], [0, 227, 389, 498], [4, 327, 389, 490], [0, 330, 363, 451], [15, 348, 302, 436], [126, 116, 156, 147], [48, 52, 269, 480], [17, 0, 224, 154], [34, 54, 245, 478], [8, 98, 389, 491], [24, 12, 167, 110], [17, 116, 316, 361], [32, 0, 305, 476], [4, 110, 37, 201], [48, 135, 223, 349], [14, 410, 370, 497], [38, 13, 265, 391], [51, 301, 219, 483], [54, 332, 244, 484], [22, 127, 256, 356], [47, 172, 216, 360], [81, 92, 178, 124], [75, 82, 174, 140], [27, 150, 230, 361], [53, 20, 192, 152], [0, 269, 356, 357], [18, 2, 195, 118]], "image_id": "/export/PTM_dataset/flickr30k-cn/flickr30k-images/2954461906.jpg"}
{"sentences": [["0", "妇女们正在喝酒和编织。"]], "bbox": [[74, 113, 383, 271], [451, 159, 499, 273], [6, 20, 75, 106], [5, 16, 114, 277], [0, 7, 481, 251], [434, 195, 454, 221], [353, 34, 478, 264], [217, 8, 320, 161], [287, 127, 317, 209], [376, 15, 439, 72], [28, 260, 84, 277], [163, 12, 245, 154], [333, 163, 465, 269], [115, 152, 196, 195], [147, 3, 179, 78], [440, 49, 499, 185], [293, 182, 321, 211], [198, 136, 237, 180], [241, 8, 291, 58], [325, 139, 344, 178], [394, 126, 411, 149], [2, 205, 320, 277], [1, 70, 93, 197], [210, 125, 228, 156], [123, 95, 141, 152], [146, 0, 499, 65], [162, 6, 324, 152], [167, 50, 237, 131], [16, 167, 90, 274], [51, 0, 149, 80], [0, 64, 100, 233], [111, 139, 184, 181], [385, 63, 452, 151], [230, 54, 302, 138], [378, 50, 490, 264], [18, 180, 88, 266], [54, 142, 80, 163], [65, 259, 85, 277], [6, 9, 80, 112], [162, 53, 396, 151], [177, 11, 486, 254], [397, 94, 494, 267], [121, 89, 141, 148], [5, 4, 111, 277], [165, 6, 244, 149], [423, 58, 499, 254], [336, 12, 477, 273], [338, 14, 465, 258], [83, 84, 144, 142], [119, 16, 440, 163], [293, 160, 319, 214], [9, 162, 90, 270], [9, 16, 120, 277], [441, 157, 499, 272], [111, 142, 188, 184], [164, 14, 491, 271], [15, 174, 137, 275], [7, 32, 139, 276], [5, 0, 114, 277], [347, 120, 494, 277], [4, 12, 126, 277], [213, 5, 309, 161], [429, 35, 494, 175], [88, 209, 319, 276], [140, 0, 499, 75], [222, 6, 305, 153], [6, 8, 106, 277], [340, 90, 492, 277], [108, 123, 401, 274], [95, 1, 488, 268], [434, 157, 499, 271], [347, 214, 452, 274], [114, 88, 147, 154], [157, 14, 251, 154], [48, 139, 257, 271], [194, 128, 238, 181], [80, 120, 384, 273], [169, 47, 233, 133], [170, 43, 235, 133], [346, 12, 470, 195], [54, 6, 451, 244], [12, 1, 161, 88], [67, 195, 350, 275], [345, 170, 469, 269], [379, 23, 484, 201], [350, 213, 475, 273], [6, 13, 67, 109], [60, 85, 328, 266], [7, 2, 338, 263], [293, 127, 314, 203], [11, 11, 84, 107], [211, 13, 463, 205], [342, 79, 496, 274], [71, 15, 483, 169], [198, 132, 233, 175], [54, 104, 384, 269], [161, 9, 246, 152], [367, 181, 478, 270], [93, 1, 499, 103], [16, 190, 366, 276]], "image_id": "/export/PTM_dataset/flickr30k-cn/flickr30k-images/2314492671.jpg"}
The text was updated successfully, but these errors were encountered: