-
Notifications
You must be signed in to change notification settings - Fork 282
/
Single Image Haze Removal Using Dark Channel Prior.cpp
182 lines (176 loc) · 5.51 KB
/
Single Image Haze Removal Using Dark Channel Prior.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
#include <opencv2/opencv.hpp>
#include <iostream>
#include <algorithm>
#include <vector>
using namespace cv;
using namespace std;
int rows, cols;
//获取最小值矩阵
int **getMinChannel(cv::Mat img){
rows = img.rows;
cols = img.cols;
if(img.channels() != 3){
fprintf(stderr, "Input Error!");
exit(-1);
}
int **imgGray;
imgGray = new int *[rows];
for(int i = 0; i < rows; i++){
imgGray[i] = new int [cols];
}
for(int i = 0; i < rows; i++){
for(int j = 0; j < cols; j++){
int loacalMin = 255;
for(int k = 0; k < 3; k++){
if(img.at<Vec3b>(i, j)[k] < loacalMin){
loacalMin = img.at<Vec3b>(i, j)[k];
}
}
imgGray[i][j] = loacalMin;
}
}
return imgGray;
}
//求暗通道
int **getDarkChannel(int **img, int blockSize = 3){
if(blockSize%2 == 0 || blockSize < 3){
fprintf(stderr, "blockSize is not odd or too small!");
exit(-1);
}
//计算pool Size
int poolSize = (blockSize - 1) / 2;
int newHeight = rows + poolSize - 1;
int newWidth = cols + poolSize - 1;
int **imgMiddle;
imgMiddle = new int *[newHeight];
for(int i = 0; i < newHeight; i++){
imgMiddle[i] = new int [newWidth];
}
for(int i = 0; i < newHeight; i++){
for(int j = 0; j < newWidth; j++){
if(i < rows && j < cols){
imgMiddle[i][j] = img[i][j];
}else{
imgMiddle[i][j] = 255;
}
}
}
int **imgDark;
imgDark = new int *[rows];
for(int i = 0; i < rows; i++){
imgDark[i] = new int [cols];
}
int localMin = 255;
for(int i = poolSize; i < newHeight - poolSize; i++){
for(int j = poolSize; j < newWidth - poolSize; j++){
for(int k = i-poolSize; k < i+poolSize+1; k++){
for(int l = j-poolSize; l < j+poolSize+1; l++){
if(imgMiddle[k][l] < localMin){
localMin = imgMiddle[k][l];
}
}
}
imgDark[i-poolSize][j-poolSize] = localMin;
}
}
return imgDark;
}
struct node{
int x, y, val;
node(){}
node(int _x, int _y, int _val):x(_x),y(_y),val(_val){}
bool operator<(const node &rhs){
return val > rhs.val;
}
};
//估算全局大气光值
int getGlobalAtmosphericLightValue(int **darkChannel, cv::Mat img, bool meanMode = false, float percent = 0.001){
int size = rows * cols;
std::vector <node> nodes;
for(int i = 0; i < rows; i++){
for(int j = 0; j < cols; j++){
node tmp;
tmp.x = i, tmp.y = j, tmp.val = darkChannel[i][j];
nodes.push_back(tmp);
}
}
sort(nodes.begin(), nodes.end());
int atmosphericLight = 0;
if(int(percent*size) == 0){
for(int i = 0; i < 3; i++){
if(img.at<Vec3b>(nodes[0].x, nodes[0].y)[i] > atmosphericLight){
atmosphericLight = img.at<Vec3b>(nodes[0].x, nodes[0].y)[i];
}
}
}
//开启均值模式
if(meanMode == true){
int sum = 0;
for(int i = 0; i < int(percent*size); i++){
for(int j = 0; j < 3; j++){
sum = sum + img.at<Vec3b>(nodes[i].x, nodes[i].y)[j];
}
}
}
//获取暗通道在前0.1%的位置的像素点在原图像中的最高亮度值
for(int i = 0; i < int(percent*size); i++){
for(int j = 0; j < 3; j++){
if(img.at<Vec3b>(nodes[i].x, nodes[i].y)[j] > atmosphericLight){
atmosphericLight = img.at<Vec3b>(nodes[i].x, nodes[i].y)[j];
}
}
}
return atmosphericLight;
}
//恢复原图像
// Omega 去雾比例 参数
//t0 最小透射率值
cv::Mat getRecoverScene(cv::Mat img, float omega=0.95, float t0=0.1, int blockSize=15, bool meanModel=false, float percent=0.001){
int** imgGray = getMinChannel(img);
int **imgDark = getDarkChannel(imgGray, blockSize=blockSize);
int atmosphericLight = getGlobalAtmosphericLightValue(imgDark, img, meanModel=meanModel, percent=percent);
float **imgDark2, **transmission;
imgDark2 = new float *[rows];
for(int i = 0; i < rows; i++){
imgDark2[i] = new float [cols];
}
transmission = new float *[rows];
for(int i = 0; i < rows; i++){
transmission[i] = new float [cols];
}
for(int i = 0; i < rows; i++){
for(int j = 0; j < cols; j++){
imgDark2[i][j] = float(imgDark[i][j]);
transmission[i][j] = 1 - omega * imgDark[i][j] / atmosphericLight;
if(transmission[i][j] < 0.1){
transmission[i][j] = 0.1;
}
}
}
cv::Mat dst(img.rows, img.cols, CV_8UC3);
for(int channel = 0; channel < 3; channel++){
for(int i = 0; i < rows; i++){
for(int j = 0; j < cols; j++){
int temp = (img.at<Vec3b>(i, j)[channel] - atmosphericLight) / transmission[i][j] + atmosphericLight;
if(temp > 255){
temp = 255;
}
if(temp < 0){
temp = 0;
}
dst.at<Vec3b>(i, j)[channel] = temp;
}
}
}
return dst;
}
int main(){
cv::Mat src = cv::imread("/home/zxy/CLionProjects/Acmtest/3.jpg");
rows = src.rows;
cols = src.cols;
cv::Mat dst = getRecoverScene(src);
cv::imshow("origin", src);
cv::imshow("result", dst);
cv::imwrite("../zxy.jpg", dst);
waitKey(0);
}