-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathtest.py
142 lines (122 loc) · 4.96 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import sys
import os
curPath = os.path.abspath(os.path.dirname(__file__))
rootPath = os.path.split(curPath)[0]
sys.path.append(rootPath)
import argparse
import torch
import time
import os.path as osp
from torch.nn.parallel import DataParallel
from UW.utils import Config
from UW.core.Models import build_network
from UW.core.Datasets import build_dataset, build_dataloader
from UW.core.Optimizer import build_optimizer, build_scheduler
from UW.utils import (mkdir_or_exist, get_root_logger,
save_epoch, save_latest, save_item, normimage_test,
resume, load, normPRED)
from UW.utils.save_image import (save_image, normimage,
save_ensemble_image, save_ensemble_image_8)
from tensorboardX import SummaryWriter
# TORCH_VERSION = torch.__version__
# if TORCH_VERSION < '1.1' or TORCH_VERSION == 'parrots':
# try:
# from tensorboardX import SummaryWriter
# except ImportError:
# raise ImportError('Please install tensorboardX to use '
# 'TensorboardLoggerHook.')
# else:
# try:
# from torch.utils.tensorboard import SummaryWriter
# except ImportError:
# raise ImportError(
# 'Please run "pip install future tensorboard" to install '
# 'the dependencies to use torch.utils.tensorboard '
# '(applicable to PyTorch 1.1 or higher)')
from getpass import getuser
from socket import gethostname
def get_host_info():
return f'{getuser()}@{gethostname()}'
def parse_args():
parser = argparse.ArgumentParser(description='Train a detector')
parser.add_argument('--config',type=str,
default='/home/dong/GitHub_Frame/UW/config/UWCNN.py',
help='train config file path')
parser.add_argument('--load_from',
default='/home/dong/GitHub_Frame/UW/checkpoints/UWCNN/UWCNN_type3.pth',
help='the dir to save logs and models,')
parser.add_argument('--savepath', help='the dir to save logs and models,')
group_gpus = parser.add_mutually_exclusive_group()
group_gpus.add_argument(
'--gpus',
default=1,
type=int,
help='number of gpus to use '
'(only applicable to non-distributed training)')
group_gpus.add_argument(
'--gpu-ids',
type=int,
nargs='+',
help='ids of gpus to use '
'(only applicable to non-distributed training)')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
cfg = Config.fromfile(args.config)
if args.load_from is not None:
# update configs according to CLI args if args.work_dir is not None
cfg.load_from = args.load_from
if args.savepath is not None:
# update configs according to CLI args if args.work_dir is not None
cfg.savepath = args.savepath
elif cfg.get('work_dir', None) is None:
# use config filename as default work_dir if cfg.work_dir is None
cfg.savepath = osp.join('./results',
osp.splitext(osp.basename(args.config))[0])
if args.gpu_ids is not None:
cfg.gpu_ids = args.gpu_ids
else:
cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus)
mata = dict()
# make dirs
mkdir_or_exist(osp.abspath(cfg.savepath))
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
cfg.log_file = osp.join(cfg.savepath, f'{timestamp}.log')
# create text log
# build model
model = build_network(cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg)
load(cfg.load_from, model, None)
# build dataset
datasets = build_dataset(cfg.data.test)
# put model on gpu
if torch.cuda.is_available():
# model = DataParallel(model.cuda(), device_ids=cfg.gpu_ids)
model = model.cuda()
# create data_loader
data_loader = build_dataloader(
datasets,
cfg.data.val_samples_per_gpu,
cfg.data.val_workers_per_gpu,
len(cfg.gpu_ids))
save_cfg = False
for i in range(len(cfg.test_pipeling)):
if 'Normalize' == cfg.test_pipeling[i].type:
save_cfg = True
save_path = osp.join(cfg.savepath, cfg.load_from.split('/')[-1].split('.')[0])
mkdir_or_exist(save_path)
# before run
model.eval()
t = time.time()
for i, data in enumerate(data_loader):
# before iter
inputs = data['image']
with torch.no_grad():
out_rgb = model(inputs)
print('writing' + data['image_id'][0] + '.png')
# input_numpy = normimage_test(inputs, save_cfg=save_cfg)
rgb_numpy = normimage_test(out_rgb, save_cfg=save_cfg, usebytescale=cfg.usebytescale)
outsavepath = osp.join(save_path, data['image_id'][0] + '.png')
inputsavepath = osp.join(save_path, data['image_id'][0] + '_input.png')
# save_image(input_numpy, inputsavepath)
save_image(rgb_numpy, outsavepath, usebytescale=cfg.usebytescale)