-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain_our_policy.py
209 lines (175 loc) · 8.71 KB
/
train_our_policy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import sys
import logging
import argparse
import os
import shutil
import importlib.util
import torch
import gym
import copy
from torch.utils.tensorboard import SummaryWriter
from envs.model.agent import Agent
from method.trainer import MPRLTrainer
from method.memory import ReplayMemory
from method.explorer import Explorer
from policies.policy_factory import policy_factory
def set_random_seeds(seed):
"""
Sets the random seeds for pytorch cpu and gpu
"""
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.set_num_threads(8) # !!!
return None
def main(args):
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
set_random_seeds(args.randomseed)
# configure paths
make_new_dir = True
if os.path.exists(args.output_dir):
if args.overwrite:
shutil.rmtree(args.output_dir)
else:
key = input('Output directory already exists! Overwrite the folder? (y/n)')
if key == 'y' and not args.resume:
shutil.rmtree(args.output_dir)
else:
make_new_dir = False
exit(0)
if make_new_dir:
base_config = os.path.join(os.path.join(os.path.split(args.config)[0], os.pardir), 'config.py')
os.makedirs(args.output_dir)
shutil.copy(args.config, os.path.join(args.output_dir, 'config.py'))
shutil.copy(base_config, os.path.join(args.output_dir, 'base_config.py'))
args.config = os.path.join(args.output_dir, 'config.py')
log_file = os.path.join(args.output_dir, 'output.log')
rl_weight_file = os.path.join(args.output_dir, 'rl_model.pth')
# 仅仅知道模块名字和路径的情况下import模块
spec = importlib.util.spec_from_file_location('config', args.config)
if spec is None:
parser.error('Config file not found.')
config = importlib.util.module_from_spec(spec) # 通过传入模块的spec返回新的被导入的模块对象
spec.loader.exec_module(config)
# configure logging
mode = 'w'
file_handler = logging.FileHandler(log_file, mode=mode) # 输出日志信息到磁盘文件
stdout_handler = logging.StreamHandler(sys.stdout)
level = logging.INFO if not args.debug else logging.DEBUG
logging.basicConfig(level=level, handlers=[stdout_handler, file_handler],
format='%(asctime)s, %(levelname)s: %(message)s',
datefmt="%Y-%m-%d %H:%M:%S")
logging.info('Current config content is :{}'.format(config))
device = torch.device("cuda:0" if torch.cuda.is_available() and args.gpu else "cpu")
if torch.cuda.is_available() and args.gpu:
logging.info('Using gpu: %s' % args.gpu_id)
else:
logging.info('Using device: cpu')
writer = SummaryWriter(log_dir=args.output_dir)
# configure environment
env = gym.make('CrowdSim-v0')
agent = Agent()
human_df = env.human_df
# configure policy
policy_config = config.PolicyConfig()
policy = policy_factory[policy_config.name]() # model_predictive_rl
if not policy.trainable:
parser.error('Policy has to be trainable')
policy.set_device(device)
policy.configure(policy_config, human_df)
# read training parameters
train_config = config.TrainConfig(args.debug)
rl_learning_rate = train_config.train.rl_learning_rate
num_batches = train_config.train.num_batches
num_episodes = train_config.train.num_episodes
sample_episodes = train_config.train.sample_episodes
warmup_episodes = train_config.train.warmup_episodes
evaluate_episodes = train_config.train.evaluate_episodes
target_update_interval = train_config.train.target_update_interval
evaluation_interval = train_config.train.evaluation_interval
capacity = train_config.train.capacity
epsilon_start = train_config.train.epsilon_start
epsilon_end = train_config.train.epsilon_end
epsilon_decay = train_config.train.epsilon_decay
checkpoint_interval = train_config.train.checkpoint_interval
# configure trainer and explorer
memory = ReplayMemory(capacity)
model = policy.get_value_estimator()
batch_size = train_config.trainer.batch_size
optimizer = train_config.trainer.optimizer
# choose Graph or Vanilla
trainer = MPRLTrainer(model, policy.state_predictor, memory, device, policy, writer, batch_size, optimizer,
env.human_num,
reduce_sp_update_frequency=train_config.train.reduce_sp_update_frequency,
freeze_state_predictor=train_config.train.freeze_state_predictor,
detach_state_predictor=train_config.train.detach_state_predictor,
share_graph_model=policy_config.model_predictive_rl.share_graph_model)
explorer = Explorer(env, agent, device, writer, memory, policy.gamma, target_policy=policy)
logging.info('We use random-exploration methods to warm-up.')
trainer.update_target_model(model)
# reinforcement learning
policy.set_env(env)
agent.set_policy(policy)
agent.print_info()
env.set_agent(agent)
trainer.set_learning_rate(rl_learning_rate)
# fill the memory pool with some experience
agent.policy.set_epsilon(1)
explorer.run_k_episodes(k=warmup_episodes, phase='train', args=args, update_memory=True, plot_index=-1) # 100
logging.info('Warm-up finished!')
logging.info('Experience set size: %d/%d\n', len(memory), memory.capacity)
episode = 0
best_val_reward = -1
best_val_model = None
while episode < num_episodes:
# epsilon-greedy
if episode < epsilon_decay:
epsilon = epsilon_start + (epsilon_end - epsilon_start) / epsilon_decay * episode
else:
epsilon = epsilon_end
agent.policy.set_epsilon(epsilon)
# sample k episodes into memory and optimize over the generated memory
explorer.run_k_episodes(k=sample_episodes, phase='train', args=args, update_memory=True, plot_index=-1)
explorer.log('train', episode)
trainer.optimize_batch(num_batches, episode)
logging.info(f"ep {episode} training is finished. epsilon={epsilon}\n")
episode += 1
if episode % target_update_interval == 0:
trainer.update_target_model(model)
# evaluate the model
if episode % evaluation_interval == 0:
average_reward, _, _, _ ,_,_ = explorer.run_k_episodes(k=evaluate_episodes, phase='val', args=args,
plot_index=-1)
explorer.log('val', episode // evaluation_interval)
if episode % checkpoint_interval == 0 and average_reward > best_val_reward:
logging.info("Best reward model has been changed.")
best_val_reward = average_reward
best_val_model = copy.deepcopy(policy.get_state_dict())
# test after every evaluation to check how the generalization performance evolves
if args.test_after_every_eval:
explorer.run_k_episodes(k=1, phase='test', args=args, plot_index=episode)
explorer.log('test', episode // evaluation_interval)
if episode != 0 and episode % checkpoint_interval == 0:
current_checkpoint = episode // checkpoint_interval - 1
save_every_checkpoint_rl_weight_file = rl_weight_file.split('.')[0] + '_' + str(current_checkpoint) + '.pth'
policy.save_model(save_every_checkpoint_rl_weight_file)
# # test with the best val model
if best_val_model is not None:
policy.load_state_dict(best_val_model)
torch.save(best_val_model, os.path.join(args.output_dir, 'best_val.pth'))
logging.info('Save the best val model with the reward: {}'.format(best_val_reward))
if __name__ == '__main__':
parser = argparse.ArgumentParser('Parse configuration file')
parser.add_argument('--config', type=str, default='configs/infocom_benchmark/mp_separate_dp.py')
parser.add_argument('--output_dir', type=str, default='logs/debug') # output_xxxx
parser.add_argument('--overwrite', default=False, action='store_true')
parser.add_argument('--weights', type=str)
parser.add_argument('--gpu_id', type=str, default='-1')
parser.add_argument('--gpu', default=False, action='store_true')
parser.add_argument('--debug', default=False, action='store_true') # 开启debug模式
parser.add_argument('--test_after_every_eval', default=False, action='store_true')
parser.add_argument('--randomseed', type=int, default=0)
parser.add_argument('--vis_html', default=False, action='store_true')
parser.add_argument('--plot_loop', default=False, action='store_true')
parser.add_argument('--moving_line', default=False, action='store_true')
sys_args = parser.parse_args()
main(sys_args)