-
Notifications
You must be signed in to change notification settings - Fork 12
/
word2vecf.c
472 lines (453 loc) · 19 KB
/
word2vecf.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
// TODO: add total word count to vocabulary, instead of "train_words"
//
// Modifed by Yoav Goldberg, Jan-Feb 2014
// Removed:
// hierarchical-softmax training
// cbow
// Added:
// - support for different vocabularies for words and contexts
// - different input syntax
//
/////////////////////////////////////////////////////////////////
//
// Copyright 2013 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <pthread.h>
#include "vocab.h"
#include "io.h"
#define MAX_STRING 100
#define EXP_TABLE_SIZE 1000
#define MAX_EXP 6
#define MAX_SENTENCE_LENGTH 1000
#define MAX_CODE_LENGTH 40
typedef float real; // Precision of float numbers
char train_file[MAX_STRING], output_file[MAX_STRING];
char wvocab_file[MAX_STRING], cvocab_file[MAX_STRING];
char dumpcv_file[MAX_STRING];
int binary = 0, debug_mode = 2, window = 5, min_count = 5, num_threads = 1, min_reduce = 1, use_position = 0;
long long layer1_size = 100;
long long train_words = 0, word_count_actual = 0, file_size = 0, classes = 0;
real alpha = 0.025, starting_alpha, sample = 0;
real *syn0, *syn1, *syn1neg, *expTable;
clock_t start;
int numiters = 1;
struct vocabulary *wv;
struct vocabulary *cv;
int negative = 15;
const int table_size = 1e8;
int *unitable;
long long GetFileSize(char *fname) {
long long fsize;
FILE *fin = fopen(fname, "rb");
if (fin == NULL) {
printf("ERROR: file not found! %s\n", fname);
exit(1);
}
fseek(fin, 0, SEEK_END);
fsize = ftell(fin);
fclose(fin);
return fsize;
}
// Used for sampling of negative examples.
// wc[i] == the count of context number i
// wclen is the number of entries in wc (context vocab size)
void InitUnigramTable(struct vocabulary *v) {
int a, i;
long long normalizer = 0;
real d1, power = 0.75;
unitable = (int *)malloc(table_size * sizeof(int));
for (a = 0; a < v->vocab_size; a++) normalizer += pow(v->vocab[a].cn, power);
i = 0;
d1 = pow(v->vocab[i].cn, power) / (real)normalizer;
for (a = 0; a < table_size; a++) {
unitable[a] = i;
if (a / (real)table_size > d1) {
i++;
d1 += pow(v->vocab[i].cn, power) / (real)normalizer;
}
if (i >= v->vocab_size) i = v->vocab_size - 1;
}
}
void InitNet(struct vocabulary *wv, struct vocabulary *cv) {
long long a, b;
a = posix_memalign((void **)&syn0, 128, (long long)wv->vocab_size * layer1_size * sizeof(real));
if (syn0 == NULL) {printf("Memory allocation failed\n"); exit(1);}
for (b = 0; b < layer1_size; b++)
for (a = 0; a < wv->vocab_size; a++)
syn0[a * layer1_size + b] = (rand() / (real)RAND_MAX - 0.5) / layer1_size;
a = posix_memalign((void **)&syn1neg, 128, (long long)cv->vocab_size * layer1_size * sizeof(real));
if (syn1neg == NULL) {printf("Memory allocation failed\n"); exit(1);}
for (b = 0; b < layer1_size; b++)
for (a = 0; a < cv->vocab_size; a++)
syn1neg[a * layer1_size + b] = 0;
}
// Read word,context pairs from training file, where both word and context are integers.
// We are learning to predict context based on word.
//
// Word and context come from different vocabularies, but we do not really care about that
// at this point.
void *TrainModelThread(void *id) {
int ctxi = -1, wrdi = -1;
long long d;
long long word_count = 0, last_word_count = 0;
long long l1, l2, c, target, label;
unsigned long long next_random = (unsigned long long)id;
real f, g;
clock_t now;
real *neu1 = (real *)calloc(layer1_size, sizeof(real));
real *neu1e = (real *)calloc(layer1_size, sizeof(real));
FILE *fi = fopen(train_file, "rb");
long long start_offset = file_size / (long long)num_threads * (long long)id;
long long end_offset = file_size / (long long)num_threads * (long long)(id+1);
int iter;
//printf("thread %d %lld %lld \n",id, start_offset, end_offset);
for (iter=0; iter < numiters; ++iter) {
fseek(fi, start_offset, SEEK_SET);
// if not binary:
while (fgetc(fi) != '\n') { }; //TODO make sure its ok
printf("thread %d %lld\n", id, ftell(fi));
long long train_words = wv->word_count;
while (1) { //HERE @@@
// TODO set alpha scheduling based on number of examples read.
// The conceptual change is the move from word_count to pair_count
if (word_count - last_word_count > 10000) {
word_count_actual += word_count - last_word_count;
last_word_count = word_count;
if ((debug_mode > 1)) {
now=clock();
printf("%cAlpha: %f Progress: %.2f%% Words/thread/sec: %.2fk ", 13, alpha,
word_count_actual / (real)(numiters*train_words + 1) * 100,
word_count_actual / ((real)(now - start + 1) / (real)CLOCKS_PER_SEC * 1000));
fflush(stdout);
}
alpha = starting_alpha * (1 - word_count_actual / (real)(numiters*train_words + 1));
if (alpha < starting_alpha * 0.0001) alpha = starting_alpha * 0.0001;
}
if (feof(fi) || ftell(fi) > end_offset) break;
for (c = 0; c < layer1_size; c++) neu1[c] = 0;
for (c = 0; c < layer1_size; c++) neu1e[c] = 0;
wrdi = ReadWordIndex(wv, fi);
ctxi = ReadWordIndex(cv, fi);
word_count++; //TODO ?
if (wrdi < 0 || ctxi < 0) continue;
if (sample > 0) {
real ran = (sqrt(wv->vocab[wrdi].cn / (sample * wv->word_count)) + 1) * (sample * wv->word_count) / wv->vocab[wrdi].cn;
next_random = next_random * (unsigned long long)25214903917 + 11;
if (ran < (next_random & 0xFFFF) / (real)65536) continue;
ran = (sqrt(cv->vocab[ctxi].cn / (sample * cv->word_count)) + 1) * (sample * cv->word_count) / cv->vocab[ctxi].cn;
next_random = next_random * (unsigned long long)25214903917 + 11;
if (ran < (next_random & 0xFFFF) / (real)65536) continue;
}
//fread(&wrdi, 4, 1, fi);
//fread(&ctxi, 4, 1, fi);
// NEGATIVE SAMPLING
l1 = wrdi * layer1_size;
for (d = 0; d < negative + 1; d++) {
if (d == 0) {
target = ctxi;
label = 1;
} else {
next_random = next_random * (unsigned long long)25214903917 + 11;
target = unitable[(next_random >> 16) % table_size];
if (target == 0) target = next_random % (cv->vocab_size - 1) + 1;
if (target == ctxi) continue;
label = 0;
}
l2 = target * layer1_size;
f = 0;
for (c = 0; c < layer1_size; c++) f += syn0[c + l1] * syn1neg[c + l2];
if (f > MAX_EXP) g = (label - 1) * alpha;
else if (f < -MAX_EXP) g = (label - 0) * alpha;
else g = (label - expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]) * alpha;
for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1neg[c + l2];
for (c = 0; c < layer1_size; c++) syn1neg[c + l2] += g * syn0[c + l1];
}
// Learn weights input -> hidden
for (c = 0; c < layer1_size; c++) syn0[c + l1] += neu1e[c];
}
}
fclose(fi);
free(neu1);
free(neu1e);
pthread_exit(NULL);
}
/* {{{ void *TrainModelThreadOld(void *id) {
long long a, b, d, word, last_word, sentence_length = 0, sentence_position = 0;
long long word_count = 0, last_word_count = 0, sen[MAX_SENTENCE_LENGTH + 1];
long long l1, l2, c, target, label;
unsigned long long next_random = (long long)id;
real f, g;
clock_t now;
real *neu1 = (real *)calloc(layer1_size, sizeof(real));
real *neu1e = (real *)calloc(layer1_size, sizeof(real));
FILE *fi = fopen(train_file, "rb");
fseek(fi, file_size / (long long)num_threads * (long long)id, SEEK_SET);
while (1) {
if (word_count - last_word_count > 10000) {
word_count_actual += word_count - last_word_count;
last_word_count = word_count;
if ((debug_mode > 1)) {
now=clock();
printf("%cAlpha: %f Progress: %.2f%% Words/thread/sec: %.2fk ", 13, alpha,
word_count_actual / (real)(train_words + 1) * 100,
word_count_actual / ((real)(now - start + 1) / (real)CLOCKS_PER_SEC * 1000));
fflush(stdout);
}
alpha = starting_alpha * (1 - word_count_actual / (real)(train_words + 1));
if (alpha < starting_alpha * 0.0001) alpha = starting_alpha * 0.0001;
}
if (sentence_length == 0) {
while (1) {
word = ReadWordIndex(fi, &wvocabulaty);
if (feof(fi)) break;
if (word == -1) continue;
word_count++;
if (word == 0) break;
// The subsampling randomly discards frequent words while keeping the ranking same
if (sample > 0) {
real ran = (sqrt(vocab[word].cn / (sample * train_words)) + 1) * (sample * train_words) / vocab[word].cn;
next_random = next_random * (unsigned long long)25214903917 + 11;
if (ran < (next_random & 0xFFFF) / (real)65536) continue;
}
sen[sentence_length] = word;
sentence_length++;
if (sentence_length >= MAX_SENTENCE_LENGTH) break;
}
sentence_position = 0;
}
if (feof(fi)) break;
if (word_count > train_words / num_threads) break;
word = sen[sentence_position];
if (word == -1) continue;
for (c = 0; c < layer1_size; c++) neu1[c] = 0;
for (c = 0; c < layer1_size; c++) neu1e[c] = 0;
//next_random = next_random * (unsigned long long)25214903917 + 11;
//b = next_random % window;
// skipgram training
// b is current window position, in [0,1,...,window-1]
// word is sen[sentence_position]
for (a = b; a < window * 2 + 1 - b; a++) if (a != window) {
//printf("b is:%d a:%d\n", (int)b,(int)(a));
c = sentence_position - window + a;
if (c < 0) continue;
if (c >= sentence_length) continue;
last_word = sen[c];
if (last_word == -1) continue;
l1 = last_word * layer1_size;
for (c = 0; c < layer1_size; c++) neu1e[c] = 0;
// NEGATIVE SAMPLING
if (negative > 0) for (d = 0; d < negative + 1; d++) {
if (d == 0) {
target = word;
label = 1;
} else {
next_random = next_random * (unsigned long long)25214903917 + 11;
target = table[(next_random >> 16) % table_size];
if (target == 0) target = next_random % (vocab_size - 1) + 1;
if (target == word) continue;
label = 0;
}
if (use_position > 0) {
l2 = ((a > window?a-1:a) + (window * 2 * target)) * layer1_size;
} else {
l2 = target * layer1_size;
}
f = 0;
for (c = 0; c < layer1_size; c++) f += syn0[c + l1] * syn1neg[c + l2];
if (f > MAX_EXP) g = (label - 1) * alpha;
else if (f < -MAX_EXP) g = (label - 0) * alpha;
else g = (label - expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]) * alpha;
for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1neg[c + l2];
for (c = 0; c < layer1_size; c++) syn1neg[c + l2] += g * syn0[c + l1];
}
// Learn weights input -> hidden
for (c = 0; c < layer1_size; c++) syn0[c + l1] += neu1e[c];
}
sentence_position++;
if (sentence_position >= sentence_length) {
sentence_length = 0;
continue;
}
}
fclose(fi);
free(neu1);
free(neu1e);
pthread_exit(NULL);
} }}}*/
void TrainModel() {
long a, b, c, d;
FILE *fo;
FILE *fo2;
file_size = GetFileSize(train_file);
pthread_t *pt = (pthread_t *)malloc(num_threads * sizeof(pthread_t));
printf("Starting training using file %s\n", train_file);
starting_alpha = alpha;
wv = ReadVocab(wvocab_file);
cv = ReadVocab(cvocab_file);
InitNet(wv, cv);
InitUnigramTable(cv);
start = clock();
for (a = 0; a < num_threads; a++) pthread_create(&pt[a], NULL, TrainModelThread, (void *)a);
for (a = 0; a < num_threads; a++) pthread_join(pt[a], NULL);
fo = fopen(output_file, "wb");
if (classes == 0) {
// Save the word vectors
if (dumpcv_file[0] != 0) {
fo2 = fopen(dumpcv_file, "wb");
fprintf(fo2, "%d %d\n", cv->vocab_size, layer1_size);
for (a = 0; a < cv->vocab_size; a++) {
fprintf(fo2, "%s ", cv->vocab[a].word); //TODO
if (binary) for (b = 0; b < layer1_size; b++) fwrite(&syn1neg[a * layer1_size + b], sizeof(real), 1, fo2);
else for (b = 0; b < layer1_size; b++) fprintf(fo2, "%lf ", syn1neg[a * layer1_size + b]);
fprintf(fo2, "\n");
}
}
fprintf(fo, "%d %d\n", wv->vocab_size, layer1_size);
for (a = 0; a < wv->vocab_size; a++) {
fprintf(fo, "%s ", wv->vocab[a].word); //TODO
if (binary) for (b = 0; b < layer1_size; b++) fwrite(&syn0[a * layer1_size + b], sizeof(real), 1, fo);
else for (b = 0; b < layer1_size; b++) fprintf(fo, "%lf ", syn0[a * layer1_size + b]);
fprintf(fo, "\n");
}
} else {
// Run K-means on the word vectors
int clcn = classes, iter = 10, closeid;
int *centcn = (int *)malloc(classes * sizeof(int));
int *cl = (int *)calloc(wv->vocab_size, sizeof(int));
real closev, x;
real *cent = (real *)calloc(classes * layer1_size, sizeof(real));
for (a = 0; a < wv->vocab_size; a++) cl[a] = a % clcn;
for (a = 0; a < iter; a++) {
printf("kmeans iter %d\n", a);
for (b = 0; b < clcn * layer1_size; b++) cent[b] = 0;
for (b = 0; b < clcn; b++) centcn[b] = 1;
for (c = 0; c < wv->vocab_size; c++) {
for (d = 0; d < layer1_size; d++) cent[layer1_size * cl[c] + d] += syn0[c * layer1_size + d];
centcn[cl[c]]++;
}
for (b = 0; b < clcn; b++) {
closev = 0;
for (c = 0; c < layer1_size; c++) {
cent[layer1_size * b + c] /= centcn[b];
closev += cent[layer1_size * b + c] * cent[layer1_size * b + c];
}
closev = sqrt(closev);
for (c = 0; c < layer1_size; c++) cent[layer1_size * b + c] /= closev;
}
for (c = 0; c < wv->vocab_size; c++) {
closev = -10;
closeid = 0;
for (d = 0; d < clcn; d++) {
x = 0;
for (b = 0; b < layer1_size; b++) x += cent[layer1_size * d + b] * syn0[c * layer1_size + b];
if (x > closev) {
closev = x;
closeid = d;
}
}
cl[c] = closeid;
}
}
// Save the K-means classes
for (a = 0; a < wv->vocab_size; a++) fprintf(fo, "%s %d\n", wv->vocab[a].word, cl[a]);
free(centcn);
free(cent);
free(cl);
}
fclose(fo);
}
int ArgPos(char *str, int argc, char **argv) {
int a;
for (a = 1; a < argc; a++) if (!strcmp(str, argv[a])) {
if (a == argc - 1) {
printf("Argument missing for %s\n", str);
exit(1);
}
return a;
}
return -1;
}
int main(int argc, char **argv) {
int i;
if (argc == 1) {
printf("WORD VECTOR estimation toolkit v 0.1b\n\n");
printf("Options:\n");
printf("Parameters for training:\n");
printf("\t-train <file>\n");
printf("\t\tUse text data from <file> to train the model\n");
printf("\t-output <file>\n");
printf("\t\tUse <file> to save the resulting word vectors / word clusters\n");
printf("\t-size <int>\n");
printf("\t\tSet size of word vectors; default is 100\n");
printf("\t-negative <int>\n");
printf("\t\tNumber of negative examples; default is 15, common values are 5 - 10 (0 = not used)\n");
printf("\t-threads <int>\n");
printf("\t\tUse <int> threads (default 1)\n");
//printf("\t-min-count <int>\n");
//printf("\t\tThis will discard words that appear less than <int> times; default is 5\n");
printf("\t-sample <float>\n");
printf("\t\tSet threshold for occurrence of words and contexts. Those that appear with higher frequency");
printf(" in the training data will be randomly down-sampled; default is 0 (off), useful value in the original word2vec was 1e-5\n");
printf("\t-alpha <float>\n");
printf("\t\tSet the starting learning rate; default is 0.025\n");
printf("\t-iters <int>\n");
printf("\t\tPerform i iterations over the data; default is 1\n");
printf("\t-classes <int>\n");
printf("\t\tOutput word classes rather than word vectors; default number of classes is 0 (vectors are written)\n");
printf("\t-binary <int>\n");
printf("\t\tSave the resulting vectors in binary moded; default is 0 (off)\n");
printf("\t-dumpcv filename\n");
printf("\t\tDump the context vectors in file <filename>\n");
printf("\t-wvocab filename\n");
printf("\t\twords vocabulary file\n");
printf("\t-cvocab filename\n");
printf("\t\tcontexts vocabulary file\n");
printf("\nExamples:\n");
printf("./word2vecf -train data.txt -wvocab wv -cvocab cv -output vec.txt -size 200 -negative 5 -threads 10 \n\n");
return 0;
}
output_file[0] = 0;
wvocab_file[0] = 0;
cvocab_file[0] = 0;
dumpcv_file[0] = 0;
if ((i = ArgPos((char *)"-size", argc, argv)) > 0) layer1_size = atoi(argv[i + 1]);
if ((i = ArgPos((char *)"-train", argc, argv)) > 0) strcpy(train_file, argv[i + 1]);
if ((i = ArgPos((char *)"-wvocab", argc, argv)) > 0) strcpy(wvocab_file, argv[i + 1]);
if ((i = ArgPos((char *)"-cvocab", argc, argv)) > 0) strcpy(cvocab_file, argv[i + 1]);
if ((i = ArgPos((char *)"-debug", argc, argv)) > 0) debug_mode = atoi(argv[i + 1]);
if ((i = ArgPos((char *)"-binary", argc, argv)) > 0) binary = atoi(argv[i + 1]);
if ((i = ArgPos((char *)"-alpha", argc, argv)) > 0) alpha = atof(argv[i + 1]);
if ((i = ArgPos((char *)"-output", argc, argv)) > 0) strcpy(output_file, argv[i + 1]);
if ((i = ArgPos((char *)"-negative", argc, argv)) > 0) negative = atoi(argv[i + 1]);
if ((i = ArgPos((char *)"-threads", argc, argv)) > 0) num_threads = atoi(argv[i + 1]);
if ((i = ArgPos((char *)"-min-count", argc, argv)) > 0) min_count = atoi(argv[i + 1]);
if ((i = ArgPos((char *)"-classes", argc, argv)) > 0) classes = atoi(argv[i + 1]);
if ((i = ArgPos((char *)"-sample", argc, argv)) > 0) sample = atof(argv[i + 1]);
if ((i = ArgPos((char *)"-dumpcv", argc, argv)) > 0) strcpy(dumpcv_file, argv[i + 1]);
if ((i = ArgPos((char *)"-iters", argc, argv)) > 0) numiters = atoi(argv[i+1]);
if (output_file[0] == 0) { printf("must supply -output.\n\n"); return 0; }
if (wvocab_file[0] == 0) { printf("must supply -wvocab.\n\n"); return 0; }
if (cvocab_file[0] == 0) { printf("must supply -cvocab.\n\n"); return 0; }
expTable = (real *)malloc((EXP_TABLE_SIZE + 1) * sizeof(real));
for (i = 0; i < EXP_TABLE_SIZE; i++) {
expTable[i] = exp((i / (real)EXP_TABLE_SIZE * 2 - 1) * MAX_EXP); // Precompute the exp() table
expTable[i] = expTable[i] / (expTable[i] + 1); // Precompute f(x) = x / (x + 1)
}
TrainModel();
return 0;
}