forked from mankasto/iLRG
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
400 lines (351 loc) · 16.6 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
import os
import re
import torch
import random
import numpy as np
import pandas as pd
from collections import Counter
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
from methods import iLRG, sim_iLRG, idlg_infer, gi_infer, svd_infer
class Config:
def __init__(self, entries: dict = {}):
self.__dict__.update(entries)
class AverageMeter(object):
def __init__(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
self.bak = []
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
self.bak = []
def update(self, val, n=1):
self.bak.append(val)
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def filter(self, ratio):
self.avg = get_normal_mean(self.bak, ratio)
def get_normal_mean(data, ratio=0.00):
data = np.array(data)
data = np.sort(data)
filters = int(len(data) * ratio)
data = data[filters:len(data) - filters]
return np.mean(data)
def get_device(use_cuda=True):
use_cuda = torch.cuda.is_available() and use_cuda
device = 'cuda' if use_cuda else 'cpu'
return device
def set_random_seed(seed=233):
torch.manual_seed(seed + 1)
torch.cuda.manual_seed(seed + 2)
torch.cuda.manual_seed_all(seed + 3)
np.random.seed(seed + 4)
torch.cuda.manual_seed_all(seed + 5)
random.seed(seed + 6)
def split_integer(prototype, part):
if not (isinstance(prototype, int) and isinstance(part, int)):
raise ValueError('Input params should be integer.')
if part <= 1:
raise ValueError('Split part should be more than 1.')
if prototype <= part:
raise ValueError('Split part should be more than split prototype.')
board_set = set()
while len(board_set) < part - 1:
board_set.add(random.randrange(1, prototype))
board_list = list(board_set)
board_list.append(0)
board_list.append(prototype)
board_list.sort()
return [board_list[i + 1] - board_list[i] for i in range(part)]
def get_data(dataset,
num_images,
num_classes,
start_id=0,
num_uniform_cls=5,
num_target_cls=5,
data_distribution='random',
device='cpu'):
images, labels = [], []
if data_distribution == 'extreme':
cnt = 0
target_id = start_id
extreme_class = random.randint(0, num_classes - 1)
while cnt < num_images:
image, label = dataset[target_id]
if label == extreme_class:
images.append(image.float().to(device))
labels.append(torch.as_tensor((label,), device=device))
cnt += 1
target_id += 1
target_id = target_id % len(dataset)
elif data_distribution == 'random':
idx_list = random.sample(range(len(dataset)), num_images)
for idx in idx_list:
image, label = dataset[idx]
images.append(image.float().to(device))
labels.append(torch.as_tensor((label,), device=device))
target_id = idx_list[0]
elif data_distribution == 'balanced':
target_id = start_id
uniform_clses = random.sample(range(num_classes), num_uniform_cls)
num_per_cls = num_images // num_uniform_cls
cls_cnt = {cls: 0 for cls in uniform_clses}
while min(list(cls_cnt.values())) < num_per_cls:
image, label = dataset[target_id]
if label in uniform_clses and cls_cnt[label] < num_per_cls:
images.append(image.float().to(device))
labels.append(torch.as_tensor((label,), device=device))
cls_cnt[label] += 1
target_id += 1
target_id = target_id % len(dataset)
elif data_distribution == 'random2':
target_id = start_id
target_clses = random.sample(range(num_classes), num_target_cls)
# target_clses = random.sample([8, 9, 10, 11, 16, 20, 22, 28, 34, 40, 45, 53, 57, 58, 82, 85, 86, 98],
# num_target_cls)
# target_clses = random.sample([10, 20, 28, 31, 35, 40, 58, 61, 69, 82, 98, 0, 24],
# num_target_cls)
# target_clses = random.sample([20, 58, 40, 61, 10, 76, 24, 77, 7, 19, 25, 5, 75],
# num_target_cls)
random_num = split_integer(num_images, num_target_cls)
cls_num = {target_clses[i]: random_num[i] for i in range(num_target_cls)}
cls_cnt = {cls: 0 for cls in target_clses}
while sum(list(cls_cnt.values())) < num_images:
image, label = dataset[target_id]
if label in target_clses and cls_cnt[label] < cls_num[label]:
images.append(image.float().to(device))
labels.append(torch.as_tensor((label,), device=device))
cls_cnt[label] += 1
target_id += 1
target_id = target_id % len(dataset)
elif data_distribution == 'custom_imbalanced':
target_id = start_id
target_clses = [0, 18, 92]
cls_num = {0: 1, 18: num_images - 2, 92: 1}
cls_cnt = {cls: 0 for cls in target_clses}
while sum(list(cls_cnt.values())) < num_images:
image, label = dataset[target_id]
if label in target_clses and cls_cnt[label] < cls_num[label]:
images.append(image.float().to(device))
labels.append(torch.as_tensor((label,), device=device))
cls_cnt[label] += 1
target_id += 1
target_id = target_id % len(dataset)
elif data_distribution == 'custom_balanced':
target_id = start_id
target_clses = [0, 18, 92]
cls_num = {0: num_images // 3, 18: num_images // 3, 92: num_images // 3}
cls_cnt = {cls: 0 for cls in target_clses}
while sum(list(cls_cnt.values())) < num_images:
image, label = dataset[target_id]
if label in target_clses and cls_cnt[label] < cls_num[label]:
images.append(image.float().to(device))
labels.append(torch.as_tensor((label,), device=device))
cls_cnt[label] += 1
target_id += 1
target_id = target_id % len(dataset)
elif data_distribution == 'sim':
target_id = start_id
target_clses = random.sample(range(num_classes), num_target_cls)
random_num = split_integer(num_images, num_target_cls)
cls_num = {target_clses[i]: random_num[i] for i in range(num_target_cls)}
cls_cnt = {cls: 0 for cls in target_clses}
while sum(list(cls_cnt.values())) < num_images:
image, label = dataset[target_id]
if label in target_clses and cls_cnt[label] < cls_num[label]:
for _ in range(cls_num[label]):
images.append(image.float().to(device))
labels.append(torch.as_tensor((label,), device=device))
cls_cnt[label] += 1
target_id += 1
target_id = target_id % len(dataset)
elif data_distribution == 'unique':
target_id = start_id
uniform_clses = random.sample(range(num_classes), num_images)
num_per_cls = 1
cls_cnt = {cls: 0 for cls in uniform_clses}
while min(list(cls_cnt.values())) < num_per_cls:
image, label = dataset[target_id]
if label in uniform_clses and cls_cnt[label] < num_per_cls:
images.append(image.float().to(device))
labels.append(torch.as_tensor((label,), device=device))
cls_cnt[label] += 1
target_id += 1
target_id = target_id % len(dataset)
images = torch.stack(images)
labels = torch.cat(labels)
return images, labels, target_id
def get_target_data(dataset, labels, start_id=0, device='cpu'):
images = []
target_id = start_id
for i in range(len(labels)):
while True:
image, label = dataset[target_id]
if label == labels[i]:
images.append(image.float().to(device))
break
target_id += 1
target_id = target_id % len(dataset)
images = torch.stack(images)
return images, target_id
def get_dataloader(dataset, batch_size, shuffle=True):
dataloader = torch.utils.data.DataLoader(dataset, batch_size=min(batch_size, len(dataset)),
shuffle=shuffle, drop_last=True)
return dataloader
def get_log_id(res_dir='logs/Experiment'):
if not os.path.exists(res_dir):
log_id = 1
else:
history_ids = [int(''.join(re.findall(r"\d+", log_path))) for log_path in os.listdir(res_dir)]
log_id = max(history_ids) + 1 if len(history_ids) > 0 else 1
return log_id
def get_log_file(log_dir):
log_id = get_log_id(log_dir)
if not os.path.exists(log_dir):
os.makedirs(log_dir)
exp_log = os.path.join(log_dir, 'exp{}.log'.format(log_id))
log_file = open(exp_log, 'w')
return log_file
def get_params_string(params_dict):
params_string = ''
for k, v in params_dict.items():
params_string += '\t{}: {}\n'.format(k, v)
return params_string
def get_grads(outs, labels, model, loss_fn, rec=False):
loss = loss_fn(outs, labels)
model.zero_grad()
grads = torch.autograd.grad(loss, model.parameters()) if rec else torch.autograd.grad(loss, model.fc.parameters())
grads = list((_.detach().cpu().clone() for _ in grads))
return grads
def degrade_grads(grads,
defense_method='dp',
model_name='resnet18',
param_value=0.001,
images=None,
model=None):
from defense import additive_noise, gradient_clipping, \
gradient_compression, perturb_representation
if defense_method == 'dp':
lossy_grads = additive_noise(grads, param_value)
elif defense_method == 'clip':
lossy_grads = gradient_clipping(grads, param_value)
elif defense_method == 'sparse':
lossy_grads = gradient_compression(grads, param_value)
elif defense_method == 'perturb':
assert model_name == 'resnet18', 'Soteria Perturbation only applicable to resnet18'
lossy_grads = perturb_representation(grads, model, images, param_value)
return lossy_grads
def post_process_emb(embedding, model, device, alpha=0.01):
embedding = embedding.to(device)
# Feed embedding into FC-Layer to get probabilities.
out = model.fc(embedding) * alpha
prob = torch.softmax(out, dim=-1)
return prob
def collect_cls_variables(embeddings, outs, gt_label, num_classes, model, loss_fn):
# Sample indexes for each class
indexes = [np.where(gt_label.cpu().numpy() == i)[0] for i in range(num_classes)]
cls_embeddings, cls_outs, cls_probs, cls_wgrad, cls_bgrad = {}, {}, {}, {}, {}
# mods = []
for i in range(num_classes):
if len(indexes[i]) > 0:
# Average embeddings for batch_i (samples of class i)
cls_embedding = embeddings[indexes[i]]
# print(cls_embedding)
cls_emb_mod = torch.norm(cls_embedding, dim=-1)
# mods.append(cls_emb_mod)
cls_embeddings[i] = cls_embedding.mean(dim=0)
# print(cls_embeddings[i])
# print('*****************')
# Average outputs for batch_i (samples of class i)
cls_out = outs[indexes[i]]
# print(i, cls_embedding.sum(dim=-1), torch.var(cls_embedding.sum(dim=-1), dim=0))
# print(i, cls_out, torch.var(cls_out, dim=0))
cls_outs[i] = cls_out.mean(dim=0)
# Gt labels for batch_i (samples of class i)
cls_label = gt_label[indexes[i]]
# Average loss values for batch_i (samples of class i)
cls_loss = loss_fn(cls_out, cls_label)
model.zero_grad()
# Average grads for batch_i (samples of class i)
cls_grads = torch.autograd.grad(cls_loss, model.fc.parameters(), retain_graph=True)
# Gradients of last fc layer, for weight and bias
cls_grads = list((_.detach().cpu().clone() for _ in cls_grads))[-2:]
cls_wgrad[i], cls_bgrad[i] = cls_grads[0][i], cls_grads[1][i]
# Average softmax Probabilities for batch_i (samples of class i)
cls_probs[i] = torch.softmax(cls_out, dim=1).mean(dim=0)
# mods = torch.cat(mods)
# print(torch.min(mods), torch.max(mods), torch.var(mods))
return indexes, cls_embeddings, cls_outs, cls_probs, cls_wgrad, cls_bgrad
def print_util(string, log_file):
print(string)
print(string, file=log_file)
def cal_mse(x1, x2):
return torch.mean((x1.cpu() - x2.cpu()) ** 2)
# Get ground-truth labels and its instance statistic
def get_label_stats(gt_label, num_classes):
LabelCounter = dict(Counter(gt_label.cpu().numpy()))
labels = list(sorted(LabelCounter.keys()))
existences = [1 if i in labels else 0 for i in range(num_classes)]
num_instances = [LabelCounter[i] if i in labels else 0 for i in range(num_classes)]
num_instances_nonzero = [item[1] for item in sorted(LabelCounter.items(), key=lambda x: x[0])]
return labels, existences, num_instances, num_instances_nonzero
def get_irlg_res(cls_rec_probs, b_grad, gt_label, num_classes, num_images, log_file, simplified=False):
labels, existences, num_instances, num_instances_nonzero = get_label_stats(gt_label, num_classes)
# Recovered Labels
rec_instances, mod_rec_instances = sim_iLRG(cls_rec_probs, b_grad, labels, num_images) if simplified else iLRG(
cls_rec_probs,
b_grad,
num_classes,
num_images)
rec_labels = labels if simplified else list(np.where(rec_instances > 0)[0])
rec_instances_nonzero = rec_instances if simplified else rec_instances[rec_labels]
rec_existences = [1 if i in rec_labels else 0 for i in range(num_classes)]
# Calculate Class-wise Acc, Instance-wise Acc and Recall
leacc = 1.0 if simplified else accuracy_score(existences, rec_existences)
lnacc = accuracy_score(num_instances_nonzero if simplified else num_instances, list(rec_instances))
irec = sum([rec_instances[i] if rec_instances[i] <= num_instances_nonzero[i] else num_instances_nonzero[i] for i in
range(len(labels))]) / num_images if simplified else sum(
[rec_instances[i] if rec_instances[i] <= num_instances[i] else num_instances[i] for i in labels]) / num_images
# Print results
print_util('Ground-truth Labels: ' + ','.join(str(l) for l in labels), log_file=log_file)
print_util('Ground-truth Num of Instances: ' + ','.join(str(num_instances[l]) for l in labels), log_file=log_file)
print_util('Our Recovered Labels: ' + ','.join(str(l) for l in rec_labels) + ' | LeAcc: %.3f' % leacc,
log_file=log_file)
prefix = 'Our Recovered Num of Instances by Simplified Method: ' if simplified else 'Our Recovered Num of Instances: '
print_util(prefix + ','.join(str(l) for l in list(rec_instances_nonzero)) +
' | LnAcc: %.3f | IRec: %.3f' % (
lnacc, irec),
log_file=log_file)
res = [rec_labels, rec_instances_nonzero, rec_instances, existences, mod_rec_instances]
metrics = [leacc, lnacc, irec]
return res, metrics
def get_other_res(w_grad, num_classes, existences, log_file, attack_method='idlg', num_images=None):
if attack_method == 'idlg':
rec_labels = list(idlg_infer(w_grad.transpose(0, 1)))
rec_existences = [1 if i in rec_labels else 0 for i in range(num_classes)]
leacc = accuracy_score(existences, rec_existences)
print_util('iDLG Recovered Labels: ' + ','.join(str(l) for l in rec_labels) + ' | LeAcc: %.3f' % leacc,
log_file=log_file)
elif attack_method == 'gi':
rec_labels = list(gi_infer(w_grad.transpose(0, 1)))
rec_existences = [1 if i in rec_labels else 0 for i in range(num_classes)]
leacc = accuracy_score(existences, rec_existences)
print_util('GradInversion Recovered Labels: ' + ','.join(str(l) for l in rec_labels) + ' | LeAcc: %.3f' % leacc,
log_file=log_file)
elif attack_method == 'svd':
rec_labels = list(svd_infer(w_grad.transpose(0, 1), num_classes=num_classes, gt_k=num_images, epsilon=1e-10))
rec_existences = [1 if i in rec_labels else 0 for i in range(num_classes)]
leacc = accuracy_score(existences, rec_existences)
print_util('SVD Recovered Labels: ' + ','.join(str(l) for l in rec_labels) + ' | LeAcc: %.3f' % leacc,
log_file=log_file)
else:
raise NotImplementedError('Attack method not implemented.')
return leacc