-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathblowup.tex
223 lines (164 loc) · 18 KB
/
blowup.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
\chapter{Blow-up}
\section{基本概念和例子学习}
\subsection{例子一}
\subsubsection{Some notations}
\begin{definition}[][transgressive]
An element $\alpha\in H^{p,q}_{\bdd}(F)$ is called transgressive if there is a representative $\alpha\in \mA^{p,q}_{\bdd}(F)$ which extends to a form $\widetilde{\alpha}\in \mA^{p,q}_{\bdd}(F)$ such that $\bd\widetilde{\alpha}=\pi^*\beta$ for some $\bd$-closed form $\beta\in \mA^{p,q+1}_{\bdd}(B)$.
\end{definition}
The following are all the settings in this paper.
\begin{enumerate}
\item $i^*\colon \mA^{p,q}(M)\to\mA^{p,q}(N)$ is surjective, which induces a short exact sequence for the pair $(M,N)$ of complexes
\[
0\to\mA^{p,\bullet}(M,N)\to \mA^{p,\bullet}(M)\stackrel{i^*}{\to}\mA^{p,\bullet}(N)\to 0
\]
and a long exact sequence
\[
\cdots\to H^{p,\bullet}_{\bdd} (M,N)\to H^{p,\bullet}_{\bdd} (M) \to H^{p,\bullet}_{\bdd} (N)\to \cdots.
\]
!Note that here $i\colon N\hookrightarrow M$ is an inclusion, which is naturally injective. Associating with the above condition, the exactness at $\mA^{p,\bullet}(M)$ is clear.
\item
\end{enumerate}
\subsection{Blow-up with the center at a point}
\begin{definition}[][Blow-up]
Let $X$ be a complex manifolds and let $Y\subset X$ be a closed submanifold. The \textit{Blow-up of $X$ along $Y$} which is a complex manifold $\widehat{X}:=\operatorname{Bl}_Y (X)$ together with a proper holomorphic map $\sigma\colon \widehat{X}\to X$.
\end{definition}
\begin{example}[][Blow-up with the center at a point]
Consider the situation of line bundle $\mO(-1)$ over projective manifold $\bP^n$, which is given as the \textbf{incidence variety}
\[
\begin{tikzcd}
\bP^n \ar[r,-Stealth,hook,"\pi^*"]\ar[d,-Stealth]&\mO(-1)\ar[d,-Stealth,"\sigma"]\\
\{0\}\ar[r,-Stealth,hook,"\operatorname*{id}"]&\bC^{n+1}
\end{tikzcd}
\]
Recall that the set $\mO(-1)\subset \bP^n\times \bC^{n+1}$ that consists of all pairs $(\ell,z)\in\bP^n\times \bC^{n+1}$ with $z\in\ell$ forms in a natural way a holomorphic line bundle over $\bP^n$ by Huybrechets,Prop 2.2.6. First, we have the projective $\pi\colon \mO(-1)\to\bP^n$, and the fibres of $\mO(-1)$ is $\pi^{-1}(\ell) , \ell\in\bP^n$. Without loss generality, let $\bP^n=\bigcup_{i=0}^n U_i$ be the standard open covering, which induces the fact that $\ell$ must belong to one of $U_i$. Here we just set $\ell\in U_i$ for conviniance. Then we have the \textit{trivialization of $\mO(-1)$ over $U_i$}, which is given by
\[
\begin{aligned}
\psi_i\colon \pi^{-1}(U_i)&\cong U_i\times \bC\\
(\ell,z)&\mapsto (\ell,z_i).
\end{aligned}
\]
The corresponding transition maps are
\begin{align*}
\psi_{ij}(\ell=(z_0:\cdots:z_n))\colon \bC&\to\bC\\
w&\mapsto \frac{z_j}{z_i}w.
\end{align*}
In other words, the transition maps can also be written as
\begin{align*}
\psi_{ij}\colon U_i\times\bC&\to U_j\times \bC\\
(\ell,w)=(\ell,z_i) &\mapsto (\ell,\frac{z_j}{z_i}w)=(\ell,z_j)\\
\psi_i(\ell) &\to \psi_j(\ell)
\end{align*}
Now we can easily see that the fibre of $\mO(-1)$ over $\ell\in\bP^n$ is naturally isomorphic to $\ell$ itself. Let us consider the other canonical projection $\sigma\colon \mO(-1)\to \bC^{n+1}$. Theirs' relations are the following diagram.
\[
\begin{tikzcd}
&\mO(-1)\subset \bP^n\times \bC^{n+1}\dlar[-Stealth,"\pi"]\drar[-Stealth,"\sigma"]&\\
\bP^n=\bigcup_{i=0}^n U_i && \bC^{n+1}
\end{tikzcd}
\]
By the definition of the projective bundle, we obtain that all line $\ell\in \bP^n$ pass through the origin point, which means the pre-image of $\sigma$ at $0$ is just the whole projective space $\bP^n$, i.e., $\sigma^{-1}(0)=\bP^n$.
Thus we construct a \textit{Blow-up} $\sigma\colon \operatorname{Bl}_0 (\bC^{n+1})\to\bC^{n+1}$ of $\bC^{n+1}$ along the zero dimensional submanifold $\{0\}$, which by definition is a holomorphic line bundle $\mO(-1)$ with the center at $0$ . Note that $E:=\operatorname{Bl}_0 (\bC^{n+1})=\bP^n$ is the exceptional divisor.
\end{example}
\begin{example}[][Blow-up along a linear subspace][exam:blow-up at subspace]
Let $\bC^m\subset \bC^n$ be the linear subspace satisfying $z_{m+1}=\cdots=z_n=0$ and denote by $(x_{m+1}:\cdots:x_n)$ the homogeneous coordinates of $\bP^{n-m-1}$.
Define
\[
\operatorname{Bl}_{\bC^m}(\bC^n):=\{(x,z)\mid z_i\cdot x_j=z_j\cdot x_i, i,j=m+1,\cdots,n\}\subset \bP^{n-m-1}\times \bC^{n}.
\]
\end{example}
\subsection{例子二}
好的,让我们一步一步地来理解这个Blow-up的构造。
首先,考虑一个简单的情况:Blow-up原点于$\mathbb{C}^2$。原点的Blow-up是通过替换原点为所有通过原点的直线的集合来完成的。在代数几何中,这些直线可以通过它们的斜率来参数化,这些斜率可以在射影空间$P^1$中表示。因此,Blow-up的结果是一个更大的空间,其中包括了原始$\mathbb{C}^2$中除原点外的所有点,以及所有通过原点的直线的额外信息。
现在,让我们回到你的问题。我们想要Blow-up $\mathbb{C}^n$ 中的子空间$\mathbb{C}^m$。这里的子空间由坐标$x_{m+1} = x_{m+2} = \ldots = x_n = 0$定义。\textit{Blow-up的目的是在每个点$(x_1, \ldots, x_m, 0, \ldots, 0)$附近引入新的坐标,这些坐标描述了通过这个点的所有可能的“方向”。}
为了实现这一点,我们在$\mathbb{C}^n$中的每一个点$(x_1, \ldots, x_n)$引入射影空间$P^{n-m-1}$的坐标$[z_{m+1} : \ldots : z_n]$。这些$z$坐标代表了$\mathbb{C}^n$中的点在从$\mathbb{C}^m$子空间“吹开”成$P^{n-m-1}$时的方向。为了确保这些方向是良好定义的,我们需要$z$坐标满足一定的等价关系,即任意两个$z_i$和$z_j$之间必须有相同的比例因子。这就是为什么我们要求$z_i \cdot x_j = z_j \cdot x_i$,对于所有$i,j = m+1, \ldots, n$。
这组方程确保了如果我们固定了$x$坐标中的一个非零分量(比如$x_k \neq 0$),那么所有的$z_i$可以通过$x_i/x_k$来唯一确定。这样,$z$坐标就代表了通过点$(x_1, \ldots, x_n)$的直线在$\mathbb{C}^n$中的方向。
总结来说,这个构造通过在每个点附近引入射影空间的坐标来“吹开”子空间$\mathbb{C}^m$,从而得到一个新的空间$\operatorname{Bl}_{\mathbb{C}^m}(\mathbb{C}^n)$。这个空间在$\mathbb{C}^m$之外与原来的$\mathbb{C}^n$相同,在$\mathbb{C}^m$上则有一个非平凡的纤维结构,这个纤维结构是由$P^{n-m-1}$给出的。这种Blow-up构造在处理几何问题时非常有用,特别是当需要解决奇点或者复杂的交叉结构时。
当然,让我们更详细地探讨这个Blow-up构造的严谨性。
首先,我们需要确认的是,通过这组方程$z_i \cdot x_j = z_j \cdot x_i$定义的空间$\operatorname{Bl}_{\mathbb{C}^m}(\mathbb{C}^n)$确实是良好定义的。这意味着我们需要验证这些方程确实描述了一个几何对象,即一个代数簇,它在代数几何的语境中是有意义的。
这些方程定义了一个在$P^{n-m-1} \times \mathbb{C}^n$中的闭子集,因为它们是齐次的。这个闭子集被称为incidence variety,它包含了所有满足给定方程的$(x,z)$对。在这里,$z$坐标代表了射影空间中的点,而$x$坐标代表了$\mathbb{C}^n$中的点。
为了确保这个构造是良好定义的,我们需要检查两件事情:
1. 等价关系:$z$坐标必须满足射影空间中的等价关系。这意味着如果我们有两个坐标$z_i$和$z_j$,它们必须满足$z_i = \lambda z_j$,对于某个非零复数$\lambda$。这是射影空间的基本性质,即点$[z_{m+1} : \ldots : z_n]$与点$[\lambda z_{m+1} : \ldots : \lambda z_n]$是相同的。这个性质由我们的方程组自然满足,因为如果$z_i \cdot x_j = z_j \cdot x_i$对于所有的$i,j$都成立,那么对于任何非零常数$\lambda$,我们也有$(\lambda z_i) \cdot x_j = (\lambda z_j) \cdot x_i$。
2. 局部坐标系统:在$\mathbb{C}^m$的每一点附近,我们需要能够用$z$坐标来描述通过该点的所有可能方向。这是通过确保$z$坐标与$x$坐标之间的关系来实现的。如果$x_k \neq 0$,那么我们可以通过$x_i/x_k$来唯一确定$z_i$,因为方程$z_i \cdot x_k = z_k \cdot x_i$意味着$z_i = z_k \cdot (x_i/x_k)$。这表明,即使$z_k$是射影坐标中的一个“自由”选择,其他的$z_i$都是由$x$坐标唯一确定的,这样就在每个点附近定义了一个局部坐标系统。
通过这些检查,我们可以确认这个Blow-up构造是良好定义的。它在$\mathbb{C}^m$的每一点附近引入了额外的结构,而在$\mathbb{C}^m$之外则保持了原空间$\mathbb{C}^n$的结构。这种细化使得我们可以在原空间中处理奇点或复杂结构时,有更多的灵活性和控制力。
\begin{example}[][Example 2.5.2 Blow-up along a linear subspace.]
Let $\mathbb{C}^m \subset \mathbb{C}^n$ be the linear subspace satisfying $z_{m+1}=\ldots=z_n=0$ and denote by $\left(x_{m+1}: \ldots: x_n\right)$ the homogeneous coordinates of $\mathbb{P}^{n-m-1}$. We define
$$
\mathrm{Bl}_{\mathbb{C}^m}\left(\mathbb{C}^n\right):=\left\{(x, z) \mid z_i \cdot x_j=z_j \cdot x_i, i, j=m+1, \ldots, n\right\} \subset \mathbb{P}^{n-m-1} \times \mathbb{C}^n .
$$
In other words, \textcolor{purple}{$\operatorname{Bl}_{\mathbb{C}^m}\left(\mathbb{C}^n\right)$ is the incidence variety $\left\{(\ell, z) \mid z \in\left\langle\mathbb{C}^m, \ell\right\rangle\right\}$, where $\ell \in \mathbb{P}^{n-m-1}$ is a line in the complement $\mathbb{C}^{n-m}$ of $\mathbb{C}^m \subset \mathbb{C}^n$ and $\left\langle\mathbb{C}^m, \ell\right\rangle$ is the span of $\mathbb{C}^m$ and the line $\ell$.}
Using the projection $\pi: \mathrm{Bl}_{\mathbb{C}^m}\left(\mathbb{C}^n\right) \rightarrow \mathbb{P}^{n-m-1}$ one realizes $\mathrm{Bl}_{\mathbb{C}^m}\left(\mathbb{C}^n\right)$ as a $\mathbb{C}^{m+1}$-bundle over $\mathbb{P}^{n-m-1}$. The fibre over $\ell \in \mathbb{P}^{n-m-1}$ is just $\pi^{-1}(\ell)=\langle \mathbb{C}^m,\ell\rangle$. Thus, $\operatorname{Bl}_{\mathbb{C}^m}(\mathbb{C}^n)$ is a complex manifold.
Here is the corresponding blow-up diagram
\[
\begin{tikzcd}
\mathbb{P}^{n-m-1}\dar[-Stealth]\rar[-Stealth,hook,"\pi^{-1}"] & \mathrm{Bl}_{\mathbb{C}^m}\left(\mathbb{C}^n\right) \subset \mathbb{P}^{n-m-1}\times \mathbb{C}^n\dar[-Stealth,"\sigma"]\\
\mathbb{C}^m \rar[-Stealth,hook] & \mathbb{C}^n
\end{tikzcd}
\]
, where $\mathbb{C}^m$, $\mathbb{P}^{n-m-1}$, $\mathrm{Bl}_{\mathbb{C}^m}\left(\mathbb{C}^n\right)$, $\mathbb{C}^n$ are the center of the blow-up, the exceptional divisor, the \textbf{incidence variety} and the whole space, respectively.
Moreover, the projection $\sigma: \mathrm{Bl}_{\mathbb{C}^m}\left(\mathbb{C}^n\right) \rightarrow \mathbb{C}^n$ is an isomorphism over $\mathbb{C}^n \backslash$ $\mathbb{C}^m$ , that is the original space structure in $\mathbb{C}^n\backslash\mathbb{C}^m$ is invariable under the projection and $\sigma^{-1}\left(\mathbb{C}^m\right)$ is canonically isomorphic to $\mathbb{P}\left(\mathcal{N}_{\mathbb{C}^m / \mathbb{C}^n}\right)$, where the normal bundle $\mathcal{N}_{\mathbb{C}^m / \mathbb{C}^n}$ is canonically isomorphic to the trivial bundle $\mathbb{C}^m \times \mathbb{C}^{n-m}$ over $\mathbb{C}^m$.
\end{example}
\begin{remark}
首先,$\sigma: \mathrm{Bl}_{\mathbb{C}^m}\left(\mathbb{C}^n\right) \rightarrow \mathbb{C}^n$ 是Blow-up构造的投影映射,它将Blow-up空间映射回原始的$\mathbb{C}^n$空间。
$\sigma^{-1}\left(\mathbb{C}^m\right)$ 是$\mathbb{C}^m$在Blow-up空间中的原像,也就是Blow-up过程中被“吹开”的部分。这部分空间是由所有通过$\mathbb{C}^m$中点的直线构成的,这些直线在射影空间$P^{n-m-1}$中可以被参数化。
$\mathbb{P}\left(\mathcal{N}_{\mathbb{C}^m / \mathbb{C}^n}\right)$ 是$\mathbb{C}^m$在$\mathbb{C}^n$中的法向量束的射影化。法向量束$\mathcal{N}_{\mathbb{C}^m / \mathbb{C}^n}$是在$\mathbb{C}^m$上的向量束,它的纤维是$\mathbb{C}^m$在$\mathbb{C}^n$中的法向量空间。射影化的过程是将每个纤维视为一个射影空间。
$\mathcal{N}_{\mathbb{C}^m / \mathbb{C}^n}$被认为是平凡的向量束$\mathbb{C}^m \times \mathbb{C}^{n-m}$,这是因为$\mathbb{C}^m$是$\mathbb{C}^n$的线性子空间,所以它的法向量空间在每一点都是相同的,即$\mathbb{C}^{n-m}$。
所以,这个陈述的含义是:Blow-up过程中被“吹开”的部分,即$\sigma^{-1}\left(\mathbb{C}^m\right)$,在几何上等同于$\mathbb{C}^m$的法向量束的射影化。这个等同是通过将每个点的“吹开”方向与其法向量空间中的方向相对应来实现的。这种对应关系是自然的,因为在Blow-up过程中,我们正是在每个点引入了描述通过该点的所有可能方向的新坐标。
\end{remark}
\subsection{构建一般复流形上的Blow-ups}
Let us now construct the blow-up of an arbitrary complex manifold $X$ of dimension $n$ along an arbitrary submanifold $Y \subset X$ of dimension $m$. Here we have a natural inclusion map : $\iota\colon Y\to X$.
In order to do so, we choose an atlas $X=\bigcup U_i, \varphi_i: U_i \cong \varphi_i\left(U_i\right) \subset \mathbb{C}^n$ such that $\varphi_i\left(U_i \cap Y\right)=\varphi\left(U_i\right) \cap \mathbb{C}^m$.
Let $\sigma: \mathrm{Bl}_{\mathbb{C}^m}\left(\mathbb{C}^n\right) \rightarrow \mathbb{C}^n$ be the blow-up of $\mathbb{C}^n$ along $\mathbb{C}^m$ as constructed in the example above and denote by $\sigma_i: Z_i \rightarrow \varphi_i\left(U_i\right)$ its restriction to the open subset $\varphi_i\left(U_i\right) \subset \mathbb{C}^n$, i.e. $Z_i=\sigma^{-1}\left(\varphi_i\left(U_i\right)\right)$ and $\sigma_i=\left.\sigma\right|_{Z_i}$. We shall prove that all the blow-ups on the various charts $\varphi_i\left(U_i\right)$ naturally glue.
\[
\begin{tikzcd}
\operatorname{Bl}_{\mathbb{C}^m}(\mathbb{C}^n)\rar[-Stealth,"\sigma"] & \mathbb{C}^n & X\lar[-Stealth,"\varphi"]& \lar[-Stealth,"\sigma"] \operatorname{Bl}_{Y}(X)\\
\mathbb{P}^{n-m-1}\uar[-Stealth,hook] \rar[-Stealth] &\mathbb{C}^m \uar[-Stealth,hook]&Y\lar[-Stealth,"\varphi_i"] \uar[-Stealth,hook]&\mathbb{P}^{n-m-1}\uar[-Stealth,hook]\lar[-Stealth]
\end{tikzcd}
\]
Consider arbitrary open subsets $U, V \subset \mathbb{C}^n$ and a biholomorphic map $\phi: U \cong V$ with the property that $\phi\left(U \cap \mathbb{C}^m\right)=V \cap \mathbb{C}^m$. Write $\phi=\left(\phi^1, \ldots, \phi^n\right)$. Then for $k>m$ one has $\phi^k=\sum_{j=m+1}^n z_j \phi_{k, j}$ (see the proof of Proposition 2.4.7). Let us define the biholomorphic map $\hat{\phi}: \sigma^{-1}(U) \cong \sigma^{-1}(V)$ as
$$
\hat{\phi}(x, z):=\left(\left(\phi_{k, j}(z)\right)_{k, j=m+1, \ldots, n} \cdot x, \phi(z)\right) .
$$
It is straightforward to check that $\hat{\phi}(x, z)$ is indeed contained in the incidence variety. In order to obtain the global blow-up $\sigma: \mathrm{Bl}_{\mathbb{C}^m}\left(\mathbb{C}^n\right) \rightarrow X$ we have to ensure that these gluings are compatible. This is clear over $X \backslash Y$. Over $Y$ the matrices we obtain for every $\left.\phi_{i j}\right|_{\mathbb{C}^m}$ are by definition the cocycle of the normal bundle $\mathcal{N}_{Y / X}$. Thus, they do satisfy the cocycle condition. At the same time this proves that $\sigma^{-1}(Y) \cong \mathbb{P}\left(\mathcal{N}_{Y / X}\right)$.
\subsection{Dolbeault blow-up formula}
\begin{lemma}
There exists an open neighborhood $\mU$ of $Y$ in $X$ such that $i^*\colon \mA^{p,q}(\mU)\to\mA^{p,q}(Y)$ is surjective, where $i:=\iota|_{\mU}\colon Y\hookrightarrow\mU $ is the inclusion and
\[
\mA^{p,\bullet}(X,Y):=\{\alpha\in\mA^{p,\bullet}(X)\mid i^*\alpha=0\}=\ker (i^*).
\]
\end{lemma}
\begin{lemma}[][][lem:sur]
The pullback $\iota^*\colon \mA^{p,q}(X)\to\mA^{p,q}(Y)$ is surjective. Here $\iota\colon Y\hookrightarrow X$ is an inclusion.
\end{lemma}
Thus $j$ is an inclusion, which is naturally injective and $\iota^*$ is surjective by lemma \ref{lem:sur}. Now we then obtains a short exact sequence for the pair $(X,Y)$ of complexes
\[
\begin{tikzcd}
0\rar[-Stealth] & \mA^{p,\bullet}(X,Y) \rar[-Stealth,"j"] & \mA^{p,\bullet}(X)\rar[-Stealth,"\iota^*"] & \mA^{p,\bullet}(Y) \rar[-Stealth] &0.
\end{tikzcd}
\]
The blow-up $\widehat{X}$ of $x$ with the center $Z$ is a projective morphism $\pi\colon \widehat{X}\to X$ such that
\[
\pi\colon \widehat{X}- E\stackrel{\cong}{\tikz\draw[thick,-Stealth] (0,0)--+(1cm,0);} X-Z
\]
is a biholomorphism by \cite[Proposition 2.5.3]{Huybrechts2004ComplexGA}. Here
\[E:= \pi^{-1}(Z)\cong \bP(\mN_{Z/X})\]
is the \textit{exceptional divisor} of the blow-up. Then one has the following blow-up diagram
\[
\begin{tikzcd}
E\dar["\pi_E",swap,-Stealth]\rar[-Stealth,hook,"\tilde{\iota}"] &\widehat{X}\dar[-Stealth,"\pi"]\\
Z \rar[-Stealth,"\iota",hook]& X.
\end{tikzcd}
\]
, which then induces a natural commutative diagram for the short exact sequences of complexes
\[
\begin{tikzcd}
0\rar[-Stealth] & \mA^{p,\bullet}(X,Z) \dar[-Stealth,"\pi^*"]\rar[-Stealth] & \mA^{p,\bullet}(X)\dar[-Stealth,"\pi^*"]\rar[-Stealth] & \mA^{p,\bullet}(Z) \rar[-Stealth] \dar[-Stealth,"\pi_E^*"] &0\\
0\rar[-Stealth] & \mA^{p,\bullet}(\widehat{X},E) \rar[-Stealth] & \mA^{p,\bullet}(\widehat{X})\rar[-Stealth] & \mA^{p,\bullet}(E) \rar[-Stealth] &0
\end{tikzcd}
\]
and a commutative diagram for the long exact sequences
\[
\begin{tikzcd}
\cdots\rar[-Stealth] & H_{\bdd}^{p,q}(X,Z) \dar[-Stealth,"\pi^*"]\rar[-Stealth] & H_{\bdd}^{p,q}(X)\dar[-Stealth,"\pi^*"]\rar[-Stealth] & H_{\bdd}^{p,q}(Z) \rar[-Stealth,"\delta"] \dar[-Stealth,"\pi_E^*"] & H_{\bdd}^{p,q+1}(X,Z) \dar[-Stealth,"\pi^*"]\rar[-Stealth] &\cdots\\
\cdots\rar[-Stealth] & H_{\bdd}^{p,q}(\widehat{X},E) \rar[-Stealth] & H_{\bdd}^{p,q}(\widehat{X})\rar[-Stealth] & H_{\bdd}^{p,q}(E) \rar[-Stealth,"\overline{\delta}"] & H_{\bdd}^{p,q+1}(\widehat{X},E) \rar[-Stealth] &\cdots
\end{tikzcd}
\]
where $\delta,\overline{\delta}$ are the corresponding coboundary operators.