- New features and methods
- @Reza Hosseini: Forecast interpretability. Forecasts can now be broken down to grouped components: trend, seasonality, events, autoregression, regressors, intercept, etc.
- @Sayan Patra: Enhanced components plot. Now supports autoregression, lagged regressors, residuals; adds support for centering.
- @Kaixu Yang: Auto model components. (1) seasonality inferrer (2) holiday inferrer (3) automatic growth.
- @Kaixu Yang: Lag-based estimator. Supports lag-based forecasts such as week-over-week.
- @Reza Hosseini: Fast simulation option. Provides a better accuracy and speed for mean prediction when simulation is used in autoregression.
- @Kaixu Yang: Quantile regression option for Silverkite fit_algorithm.
- New model templates
- @Kaixu Yang: AUTO. Automatically chooses templates based on the data frequency, forecast horizon and evaluation configs.
- @Reza Hosseini, @Kaixu Yang: SILVERKITE_MONTHLY - a SimpleSilverkite template designed for monthly time series.
- @Kaixu Yang: SILVERKITE_WOW. Uses Silverkite to model seasonality, growth and holiday effects, and then uses week-over-week to fit the residuals. The final prediction is the total of the two models.
- New datasets
- 4 hourly datasets: Solar Power, Wind Power, Electricity, San Francisco Bay Area Traffic.
- 1 daily dataset: Bitcoin Transactions.
- 2 monthly datasets: Sunspot, FRED House Supply.
- Library enhancements and bug fixes
- The SILVERKITE template has been updated to include automatic autoregression and changepoint detection.
- Renamed SilverkiteMultistageEstimator to MultistageForecastEstimator.
- Renamed the normalization method "min_max" to "zero_to_one".
- @Reza Hosseini: Added normalization methods: "minus_half_to_half", "zero_at_origin".
- @Albert Chen: Updated tutorials.
- @Yi Su: Upgraded fbprophet 0.5 to prophet 1.0.
- @Yi Su: Upgraded holidays to 0.13.
- @Albert Chen @Kaixu Yang @Yi Su: Speed optimization for Silverkite algorithms.
- @Albert Chen @Reza Hosseini @Kaixu Yang @Sayan Patra @Yi Su: Other library enhancements and bug fixes.
- New tutorials
- @Reza Hosseini: Monthly time series forecast.
- @Yi Su: Weekly time series forecast.
- @Albert Chen: Forecast reconciliation.
- @Kaixu Yang: Forecast one-by-one method.
- New methods
- @Yi Su: Lagged regressor (method was released in 0.2.0 but documentation was added in this release).
- @Kaixu Yang @Saad Eddin Al Orjany: Model storage (method was released in 0.2.0 but documentation was added in this release).
- @Kaixu Yang: Silverkite Multistage method for fast training on small granularity data (with tutorial).
- @Albert Chen: Forecast reconciliation with interface and defaults optimized.
- New model templates
- @Yi Su: SILVERKITE_WITH_AR: The SILVERKITE template with autoregression.
- @Yi Su: SILVERKITE_DAILY_1: A SimpleSilverkite template designed for daily data with forecast horizon 1.
- @Kaixu Yang: SILVERKITE_TWO_STAGE: A two stage model using the Silverkite Multistage method that is good for sub-daily data with a long history.
- @Kaixu Yang: SILVERKITE_MULTISTAGE_EMPTY: A base template for the Silverkite Multistage method.
- Library enhancements and bug fixes
- @Yi Su: Updated plotly to v5.
- @Reza Hosseini: Use explicit_pred_cols, drop_pred_cols to directly specify or exclude model formula terms (see Custom Parameters).
- @Reza Hosseini: Use simulation_num to specify number of simulations to use for generating forecasts and prediction intervals. Applies only if any of the lags in autoreg_dict are smaller than forecast_horizon (see Auto-regression).
- @Reza Hosseini: Use normalize_method to normalize the design matrix (see Custom Parameters).
- @Yi Su: Allow no CV and no backtest in pipeline.
- @Albert Chen: Added synthetic hierarchical dataset.
- Bug fix: cv_use_most_recent_splits in EvaluationPeriodParam was previously ignored.
- @Albert Chen @Kaixu Yang @Reza Hosseini @Saad Eddin Al Orjany @Sayan Patra @Yi Su: Other library enhancements and bug fixes.
- @Kaixu Yang: Removed the dependency on fbprophet and change it to optional.
- @Kaixu Yang @Saad Eddin Al Orjany: Added model dumping and loading for storing (see Forecaster.dump_forecast_result and Forecaster.load_forecast_result).
- @Kaixu Yang @Reza Hosseini: Added forecast one-by-one method.
- @Sayan Patra: Added the support of AutoArima by pmdarima, see the AUTO_ARIMA template.
- First release on PyPI.