-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDivide Dataset.py
51 lines (43 loc) · 1.53 KB
/
Divide Dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from torch.utils import data
from sklearn.model_selection import train_test_split
import numpy as np
import pandas as pd
from operator import eq
Kusitms = pd.read_csv("C:/Users/USER/Desktop/2016726091/KUSITMS/21기/인공지능스터디/1주차/classscore.csv")
class MyDataset(data.Dataset):
def __init__(self):
super().__init__()
self.sample_array = Kusitms
print(self.sample_array)
def __len__(self):
return len(self.sample_array)
def __getitem__(self, index):
item = self.sample_array.iloc[index, :]
return item
class MyDatasetAdvanced(data.Dataset):
def __init__(self, mode):
super().__init__()
self.sample_array = Kusitms
K_dev, K_test = train_test_split(self.sample_array, test_size=0.2)
K_train, K_val = train_test_split(K_dev, test_size=0.1)
if eq(mode,'train'):
print(K_train)
if eq(mode,'val'):
print(K_val)
if eq(mode,'test'):
print(K_test)
def __len__(self):
return len(self.sample_array)
def __getitem__(self, index):
item = self.sample_array.loc[index, :]
return item
if __name__ == '__main__':
mydataset = MyDataset()
print(mydataset[0])
print()
advanced_dataset_train = MyDatasetAdvanced(mode='train')
print()
advanced_dataset_val = MyDatasetAdvanced(mode='val')
print()
advanced_dataset_test = MyDatasetAdvanced(mode='test')
print()