forked from monologg/KoBERT-nsmc
-
Notifications
You must be signed in to change notification settings - Fork 3
/
predict.py
153 lines (113 loc) · 5.4 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import os
import logging
import argparse
from tqdm import tqdm, trange
import numpy as np
import torch
from torch.utils.data import TensorDataset, DataLoader, SequentialSampler
from transformers import AutoModelForSequenceClassification
from utils import init_logger, load_tokenizer
logger = logging.getLogger(__name__)
def get_device(pred_config):
return "cuda" if torch.cuda.is_available() and not pred_config.no_cuda else "cpu"
def get_args(pred_config):
return torch.load(os.path.join(pred_config.model_dir, 'training_args.bin'))
def load_model(pred_config, args, device):
# Check whether model exists
if not os.path.exists(pred_config.model_dir):
raise Exception("Model doesn't exists! Train first!")
try:
model = AutoModelForSequenceClassification.from_pretrained(args.model_dir) # Config will be automatically loaded from model_dir
model.to(device)
model.eval()
logger.info("***** Model Loaded *****")
except:
raise Exception("Some model files might be missing...")
return model
def convert_input_file_to_tensor_dataset(pred_config,
args,
cls_token_segment_id=0,
pad_token_segment_id=0,
sequence_a_segment_id=0,
mask_padding_with_zero=True):
tokenizer = load_tokenizer(args)
# Setting based on the current model type
cls_token = tokenizer.cls_token
sep_token = tokenizer.sep_token
pad_token_id = tokenizer.pad_token_id
all_input_ids = []
all_attention_mask = []
all_token_type_ids = []
with open(pred_config.input_file, "r", encoding="utf-8") as f:
for line in f:
line = line.strip()
tokens = tokenizer.tokenize(line)
# Account for [CLS] and [SEP]
special_tokens_count = 2
if len(tokens) > args.max_seq_len - special_tokens_count:
tokens = tokens[:(args.max_seq_len - special_tokens_count)]
# Add [SEP] token
tokens += [sep_token]
token_type_ids = [sequence_a_segment_id] * len(tokens)
# Add [CLS] token
tokens = [cls_token] + tokens
token_type_ids = [cls_token_segment_id] + token_type_ids
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real tokens are attended to.
attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids)
# Zero-pad up to the sequence length.
padding_length = args.max_seq_len - len(input_ids)
input_ids = input_ids + ([pad_token_id] * padding_length)
attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length)
token_type_ids = token_type_ids + ([pad_token_segment_id] * padding_length)
all_input_ids.append(input_ids)
all_attention_mask.append(attention_mask)
all_token_type_ids.append(token_type_ids)
# Change to Tensor
all_input_ids = torch.tensor(all_input_ids, dtype=torch.long)
all_attention_mask = torch.tensor(all_attention_mask, dtype=torch.long)
all_token_type_ids = torch.tensor(all_token_type_ids, dtype=torch.long)
dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids)
return dataset
def predict(pred_config):
# load model and args
args = get_args(pred_config)
device = get_device(pred_config)
model = load_model(pred_config, args, device)
logger.info(args)
# Convert input file to TensorDataset
dataset = convert_input_file_to_tensor_dataset(pred_config, args)
# Predict
sampler = SequentialSampler(dataset)
data_loader = DataLoader(dataset, sampler=sampler, batch_size=pred_config.batch_size)
preds = None
for batch in tqdm(data_loader, desc="Predicting"):
batch = tuple(t.to(device) for t in batch)
with torch.no_grad():
inputs = {"input_ids": batch[0],
"attention_mask": batch[1],
"labels": None}
if args.model_type != "distilkobert":
inputs["token_type_ids"] = batch[2]
outputs = model(**inputs)
logits = outputs[0]
if preds is None:
preds = logits.detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
preds = np.argmax(preds, axis=1)
# Write to output file
with open(pred_config.output_file, "w", encoding="utf-8") as f:
for pred in preds:
f.write("{}\n".format(pred))
logger.info("Prediction Done!")
if __name__ == "__main__":
init_logger()
parser = argparse.ArgumentParser()
parser.add_argument("--input_file", default="sample_pred_in.txt", type=str, help="Input file for prediction")
parser.add_argument("--output_file", default="sample_pred_out.txt", type=str, help="Output file for prediction")
parser.add_argument("--model_dir", default="./model", type=str, help="Path to save, load model")
parser.add_argument("--batch_size", default=32, type=int, help="Batch size for prediction")
parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
pred_config = parser.parse_args()
predict(pred_config)