-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathphi2.py
51 lines (40 loc) · 1.98 KB
/
phi2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
torch.set_default_device("cpu")
class Phi2:
def __init__(self) -> None:
self.model, self.tokenizer = self.load_phi2()
self.prompt_begin = "Instruct: "
self.prompt_end = "Provide detailed instructions for cooking including quantities of ingredients and cooking steps."
self.prompt = None
self.inputs = None
@staticmethod
def load_phi2():
model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", torch_dtype=torch.float32, trust_remote_code=True) #torch.float32 for cpu
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)
return model, tokenizer
def format_inputs(self, user_input):
self.prompt = self.prompt_begin + user_input + self.prompt_end
self.inputs = self.tokenizer(self.prompt, return_tensors="pt", return_attention_mask=False)
def generate_outputs(self):
output_ids = self.model.generate(**self.inputs, max_length=500, do_sample=True, top_p=0.95, top_k=60)
output_text = self.tokenizer.decode(output_ids[0], skip_special_tokens=True)
return output_text
def generate_outputs_streaming(self):
# Generate outputs in a streaming manner (character by character)
output_ids = self.model.generate(**self.inputs, max_length=500, do_sample=True, top_p=0.95, top_k=60)
output_text = self.tokenizer.decode(output_ids[0], skip_special_tokens=True)
for char in output_text:
yield char
def talk_to_me(self):
prompt = input('>> Message FoodGPT: ')
self.format_inputs(prompt)
print("FoodGPT: ", end="", flush=True)
for char in self.generate_outputs_streaming():
print(char, end="", flush=True)
print() # Print a newline after the response is complete
return self.talk_to_me()
# Example usage:
if __name__ == "__main__":
bot = Phi2()
bot.talk_to_me()