-
Notifications
You must be signed in to change notification settings - Fork 4
/
retrieve_clips.py
209 lines (178 loc) · 8.1 KB
/
retrieve_clips.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
"""Video retrieval experiment, top-k."""
import os
import math
import itertools
import argparse
import time
import random
import json
from tqdm import tqdm
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, random_split
from torchvision import transforms
from matplotlib import pyplot as plt
from sklearn.neighbors import KNeighborsClassifier
import sklearn.metrics as metrics
from sklearn.metrics.pairwise import cosine_distances, euclidean_distances
from datasets.ucf101 import UCF101ClipRetrievalDataset
from models.c3d import C3D
from models.r3d import R3DNet
from models.r21d import R2Plus1DNet
import ast
def load_pretrained_weights(ckpt_path):
"""load pretrained weights and adjust params name."""
adjusted_weights = {}
pretrained_weights = torch.load(ckpt_path)
for name, params in pretrained_weights.items():
if 'base_network' in name:
name = name[name.find('.')+1:]
adjusted_weights[name] = params
#print('Pretrained weight name: [{}]'.format(name))
return adjusted_weights
def diff(x):
shift_x = torch.roll(x, 1, 2)
return ((shift_x - x)+1)/2
def extract_feature(args):
"""Extract and save features for train split, several clips per video."""
torch.backends.cudnn.benchmark = True
# Force the pytorch to create context on the specific device
#os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
device = torch.device('cuda:0' if torch.cuda.is_available() else "cpu")
########### model ##############
if args.model == 'c3d':
model = C3D(with_classifier=False, return_conv=True).to(device)
elif args.model == 'r3d':
model = R3DNet(layer_sizes=(1,1,1,1), with_classifier=False, return_conv=True).to(device)
elif args.model == 'r21d':
model = R2Plus1DNet(layer_sizes=(1,1,1,1), with_classifier=False, return_conv=True).to(device)
if args.ckpt:
pretrained_weights = load_pretrained_weights(args.ckpt)
model.load_state_dict(pretrained_weights, strict=True)
model.eval()
torch.set_grad_enabled(False)
### Exract for train split ###
train_transforms = transforms.Compose([
transforms.Resize((128, 171)),
transforms.CenterCrop(112),
transforms.ToTensor()
])
if args.dataset == 'ucf101':
train_dataset = UCF101ClipRetrievalDataset('data', 16, 10, True, train_transforms)
#elif args.dataset == 'hmdb51':
# train_dataset = HMDB51ClipRetrievalDataset('data/hmdb51', 16, 10, True, train_transforms)
train_dataloader = DataLoader(train_dataset, batch_size=args.bs, shuffle=False,
num_workers=args.workers, pin_memory=True, drop_last=True)
features = []
classes = []
for data in tqdm(train_dataloader):
sampled_clips, idxs = data
clips = sampled_clips.reshape((-1, 3, 16, 112, 112))
inputs = clips.to(device)
if args.modality == 'res':
outputs = model(diff(inputs))
else:
outputs = model(inputs)
# forward
#outputs = model(inputs)
# print(outputs.shape)
# exit()
features.append(outputs.cpu().numpy().tolist())
classes.append(idxs.cpu().numpy().tolist())
features = np.array(features).reshape(-1, 10, outputs.shape[1])
classes = np.array(classes).reshape(-1, 10)
np.save(os.path.join(args.feature_dir, 'train_feature.npy'), features)
np.save(os.path.join(args.feature_dir, 'train_class.npy'), classes)
### Exract for test split ###
test_transforms = transforms.Compose([
transforms.Resize((128, 171)),
transforms.CenterCrop(112),
transforms.ToTensor()
])
if args.dataset == 'ucf101':
test_dataset = UCF101ClipRetrievalDataset('data', 16, 10, False, test_transforms)
#elif args.dataset == 'hmdb51':
# test_dataset = HMDB51ClipRetrievalDataset('data/hmdb51', 16, 10, False, test_transforms)
test_dataloader = DataLoader(test_dataset, batch_size=args.bs, shuffle=False,
num_workers=args.workers, pin_memory=True, drop_last=True)
features = []
classes = []
for data in tqdm(test_dataloader):
sampled_clips, idxs = data
clips = sampled_clips.reshape((-1, 3, 16, 112, 112))
inputs = clips.to(device)
# forward
if args.modality=='res':
shift_inputs = torch.roll(inputs, 1, 2)
outputs = model(((shift_inputs - inputs)+1)/2)
else:
outputs = model(inputs)
features.append(outputs.cpu().numpy().tolist())
classes.append(idxs.cpu().numpy().tolist())
features = np.array(features).reshape(-1, 10, outputs.shape[1])
classes = np.array(classes).reshape(-1, 10)
np.save(os.path.join(args.feature_dir, 'test_feature.npy'), features)
np.save(os.path.join(args.feature_dir, 'test_class.npy'), classes)
print('Saving features to ...', args.feature_dir)
def topk_retrieval(args):
"""Extract features from test split and search on train split features."""
print('Load local .npy files. from ...', args.feature_dir)
X_train = np.load(os.path.join(args.feature_dir, 'train_feature.npy'))
y_train = np.load(os.path.join(args.feature_dir, 'train_class.npy'))
X_train = np.mean(X_train,1)
y_train = y_train[:,0]
X_train = X_train.reshape((-1, X_train.shape[-1]))
y_train = y_train.reshape(-1)
X_test = np.load(os.path.join(args.feature_dir, 'test_feature.npy'))
y_test = np.load(os.path.join(args.feature_dir, 'test_class.npy'))
X_test = np.mean(X_test,1)
y_test = y_test[:,0]
X_test = X_test.reshape((-1, X_test.shape[-1]))
y_test = y_test.reshape(-1)
ks = [1, 5, 10, 20, 50]
topk_correct = {k:0 for k in ks}
distances = cosine_distances(X_test, X_train)
indices = np.argsort(distances)
for k in ks:
# print(k)
top_k_indices = indices[:, :k]
# print(top_k_indices.shape, y_test.shape)
for ind, test_label in zip(top_k_indices, y_test):
labels = y_train[ind]
if test_label in labels:
# print(test_label, labels)
topk_correct[k] += 1
for k in ks:
correct = topk_correct[k]
total = len(X_test)
print('Top-{}, correct = {:.2f}, total = {}, acc = {:.3f}'.format(k, correct, total, correct/total))
with open(os.path.join(args.feature_dir, 'topk_correct.json'), 'w') as fp:
json.dump(topk_correct, fp)
def parse_args():
parser = argparse.ArgumentParser(description='Frame Retrieval Experiment')
parser.add_argument('--cl', type=int, default=16, help='clip length')
parser.add_argument('--model', type=str, default='r3d', help='c3d/r3d/r21d')
parser.add_argument('--id', type=str, default='r3d', help='train ID to distinguish with each other')
parser.add_argument('--dataset', type=str, default='ucf101', help='ucf101/hmdb51')
parser.add_argument('--feature_dir', type=str, default='features/', help='dir to store feature.npy')
parser.add_argument('--gpu', type=int, default=0, help='GPU id')
parser.add_argument('--ckpt', type=str, help='checkpoint path')
parser.add_argument('--bs', type=int, default=8, help='mini-batch size')
parser.add_argument('--workers', type=int, default=8, help='number of data loading workers')
parser.add_argument('--extract', type=int, default=1, help='extract features when True')
parser.add_argument('--modality', default='rgb', type=str, help='currently support [rgb, res]')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
args.feature_dir = os.path.join(args.feature_dir, args.id)
print(vars(args))
if args.modality == 'res':
print("[Warning] Use residual clips as input.")
if not os.path.exists(args.feature_dir):
os.makedirs(args.feature_dir)
if args.extract:
extract_feature(args)
topk_retrieval(args)