-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_vcp.py
332 lines (292 loc) · 13.9 KB
/
train_vcp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
"""Video clip order prediction."""
import os
import math
import itertools
import argparse
import time
import random
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, random_split
from torchvision import transforms
import torch.optim as optim
from tensorboardX import SummaryWriter
from datasets.ucf101 import UCF101VCPDataset
from models.c3d import C3D
from models.r3d import R3DNet
from models.r21d import R2Plus1DNet
from models.vcopn import VCPN
from tqdm import tqdm
import ast
from utils import AverageMeter, calculate_accuracy
def order_class_index(order):
"""Return the index of the order in its full permutation.
Args:
order (tensor): e.g. [0,1,2]
"""
classes = list(itertools.permutations(list(range(len(order)))))
return classes.index(tuple(order.tolist()))
def adjacent_shuffle(x):
# (C X T x H x W)
tmp = torch.chunk(x, 4, dim=1)
order = [0,1,2,3]
ind1 = random.randint(0,3)
ind2 = (ind1 + random.randint(0,2) + 1) % 4
order[ind1], order[ind2] = order[ind2], order[ind1]
x_new = torch.cat((tmp[order[0]], tmp[order[1]], tmp[order[2]], tmp[order[3]]),1)
return x_new
def spatial_permutation(x):
c, t, h, w = x.shape
hm = h // 2
wm = w // 2
slices = []
slices.append(x[:,:,:hm,:wm]) # A
slices.append(x[:,:,:hm,wm:]) # B
slices.append(x[:,:,hm:,:wm]) # C
slices.append(x[:,:,hm:,wm:]) # D
#order = [1,2,3,4]
#while order == [1,2,3,4]:
# random.shuffle(order)
order = [3,2,1,0]
x_new = torch.cat((torch.cat((slices[order[0]], slices[order[1]]), 3), torch.cat((slices[order[2]], slices[order[3]]), 3)), 2)
return x_new
def preprocess(inputs, targets):
b, n, c, t, h, w = inputs.shape
new_in = []
# 0: origin, 1: rotation, 2: spatial permtation, 3: temporal shuffling, 4: remote clip
for i in range(b):
one_sample = inputs[i,:,:,:,:,:]
one_label = targets[i]
if one_label == 0:
new_in.append(one_sample[0:3,:,:,:,:])
elif one_label == 4:
one_sample[1,:,:,:,:] = one_sample[3,:,:,:,:]
new_in.append(one_sample[0:3,:,:,:,:])
elif one_label == 1:
one_sample[1,:,:,:,:] = torch.rot90(one_sample[1,:,:,:,:], random.randint(0,2) + 1, [2, 3])
new_in.append(one_sample[0:3,:,:,:,:])
elif one_label == 2:
one_sample[1,:,:,:,:] = spatial_permutation(one_sample[1,:,:,:,:])
new_in.append(one_sample[0:3,:,:,:,:])
elif one_label == 3:
one_sample[1,:,:,:,:] = adjacent_shuffle(one_sample[1,:,:,:,:])
new_in.append(one_sample[0:3,:,:,:,:])
return torch.stack(new_in)
def train(args, model, criterion, optimizer, device, train_dataloader, writer, epoch):
torch.set_grad_enabled(True)
model.train()
running_loss = 0.0
correct = 0
batch_time = AverageMeter()
losses = AverageMeter()
accuracies = AverageMeter()
end_time = time.time()
for i, data in enumerate(train_dataloader,1):
# get inputs
tuple_clips, targets = data
inputs = tuple_clips.to(device)
targets = targets.to(device)
inputs = preprocess(inputs, targets)
# zero the parameter gradients
optimizer.zero_grad()
# forward and backward
outputs = model(inputs) # return logits here
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
# compute loss and acc
batch_time.update(time.time() - end_time)
end_time = time.time()
acc = calculate_accuracy(outputs, targets)
losses.update(loss.data.item(), inputs.size(0))
accuracies.update(acc, inputs.size(0))
print('Train epoch: [{0:3d}/{1:3d}][{2:4d}/{3:4d}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Acc {acc.val:.3f} ({acc.avg:.3f})\t'
'lr {lr}'.format(
epoch, args.epochs, i + 1, len(train_dataloader),
batch_time=batch_time,
loss=losses,
acc=accuracies,
lr=optimizer.param_groups[0]['lr']), end='\r')
if i % args.pf == 0:
step = (epoch-1)*len(train_dataloader) + i
writer.add_scalar('train/CrossEntropyLoss', losses.val, step)
writer.add_scalar('train/Accuracy', accuracies.val, step)
# summary params and grads per eopch
for name, param in model.named_parameters():
writer.add_histogram('params/{}'.format(name), param, epoch)
writer.add_histogram('grads/{}'.format(name), param.grad, epoch)
# To avoid overlapping following logs because '\r' is used above
print('')
def validate(args, model, criterion, device, val_dataloader, writer, epoch):
torch.set_grad_enabled(False)
model.eval()
total_loss = 0.0
correct = 0
for i, data in enumerate(val_dataloader):
# get inputs
tuple_clips, targets = data
inputs = tuple_clips.to(device)
targets = targets.to(device)
inputs = preprocess(inputs, targets)
# forward
outputs = model(inputs) # return logits here
loss = criterion(outputs, targets)
# compute loss and acc
total_loss += loss.item()
pts = torch.argmax(outputs, dim=1)
correct += torch.sum(targets == pts).item()
# print('correct: {}, {}, {}'.format(correct, targets, pts))
avg_loss = total_loss / len(val_dataloader)
avg_acc = correct / len(val_dataloader.dataset)
writer.add_scalar('val/CrossEntropyLoss', avg_loss, epoch)
writer.add_scalar('val/Accuracy', avg_acc, epoch)
print('[VAL] loss: {:.3f}, acc: {:.3f}'.format(avg_loss, avg_acc))
return avg_loss
def test(args, model, criterion, device, test_dataloader):
torch.set_grad_enabled(False)
model.eval()
total_loss = 0.0
correct = 0
for i, data in enumerate(test_dataloader, 1):
# get inputs
tuple_clips, targets = data
inputs = tuple_clips.to(device)
targets = targets.to(device)
inputs = preprocess(inputs, targets)
# forward
outputs = model(inputs)
loss = criterion(outputs, targets)
# compute loss and acc
total_loss += loss.item()
pts = torch.argmax(outputs, dim=1)
correct += torch.sum(targets == pts).item()
# print('correct: {}, {}, {}'.format(correct, targets, pts))
avg_loss = total_loss / len(test_dataloader)
avg_acc = correct / len(test_dataloader.dataset)
print('[TEST] loss: {:.3f}, acc: {:.3f}'.format(avg_loss, avg_acc))
return avg_loss
def parse_args():
parser = argparse.ArgumentParser(description='Video Clip Order Prediction')
parser.add_argument('--mode', type=str, default='train', help='train/test')
parser.add_argument('--model', type=str, default='r3d', help='c3d/r3d/r21d')
parser.add_argument('--cl', type=int, default=16, help='clip length')
parser.add_argument('--it', type=int, default=8, help='interval')
parser.add_argument('--tl', type=int, default=3, help='tuple length')
parser.add_argument('--gpu', type=int, default=0, help='GPU id')
parser.add_argument('--lr', type=float, default=1e-2, help='learning rate')
parser.add_argument('--momentum', type=float, default=9e-1, help='momentum')
parser.add_argument('--wd', type=float, default=5e-4, help='weight decay')
parser.add_argument('--log', type=str, default='logs', help='log directory')
parser.add_argument('--ckpt', type=str, help='checkpoint path')
parser.add_argument('--desp', type=str, help='additional description')
parser.add_argument('--epochs', type=int, default=200, help='number of total epochs to run')
parser.add_argument('--start-epoch', type=int, default=1, help='manual epoch number (useful on restarts)')
parser.add_argument('--bs', type=int, default=8, help='mini-batch size')
parser.add_argument('--workers', type=int, default=8, help='number of data loading workers')
parser.add_argument('--pf', type=int, default=100, help='print frequency every batch')
parser.add_argument('--seed', type=int, default=632, help='seed for initializing training.')
parser.add_argument('--modality', default='rgb', type=str, help='currently support [rgb, res]')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
print(vars(args))
torch.backends.cudnn.benchmark = True
# Force the pytorch to create context on the specific device
#os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
device = torch.device('cuda:0' if torch.cuda.is_available() else "cpu")
if args.seed:
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.gpu:
torch.cuda.manual_seed_all(args.seed)
########### model ##############
if args.model == 'c3d':
base = C3D(with_classifier=False)
elif args.model == 'r3d':
base = R3DNet(layer_sizes=(1,1,1,1), with_classifier=False)
elif args.model == 'r21d':
base = R2Plus1DNet(layer_sizes=(1,1,1,1), with_classifier=False)
vcpn = VCPN(base_network=base, feature_size=512, tuple_len=args.tl, modality=args.modality).to(device)
if args.mode == 'train': ########### Train #############
if args.ckpt: # resume training
vcpn.load_state_dict(torch.load(args.ckpt))
log_dir = os.path.dirname(args.ckpt)
else:
if args.desp:
exp_name = '{}_{}_cl{}_it{}_tl{}_{}_{}'.format(args.model, args.modality, args.cl, args.it, args.tl, args.desp, time.strftime('%m%d'))
else:
exp_name = '{}_{}_cl{}_it{}_tl{}_{}'.format(args.model, args.modality, args.cl, args.it, args.tl, time.strftime('%m%d'))
log_dir = os.path.join(args.log, exp_name)
print(exp_name)
writer = SummaryWriter(log_dir)
train_transforms = transforms.Compose([
transforms.Resize((128, 171)), # smaller edge to 128
transforms.RandomCrop(112),
transforms.ToTensor()
])
train_dataset = UCF101VCPDataset('data/', args.cl, args.it, args.tl, True, train_transforms)
# split val for 800 videos
train_dataset, val_dataset = random_split(train_dataset, (len(train_dataset)-800, 800))
print('TRAIN video number: {}, VAL video number: {}.'.format(len(train_dataset), len(val_dataset)))
train_dataloader = DataLoader(train_dataset, batch_size=args.bs, shuffle=True,
num_workers=args.workers, pin_memory=True)
val_dataloader = DataLoader(val_dataset, batch_size=args.bs, shuffle=False,
num_workers=args.workers, pin_memory=True)
if args.ckpt:
pass
else:
# save graph and clips_order samples
for i, data in enumerate(train_dataloader):
tuple_clips, targets = data
for i in range(args.tl):
writer.add_video('train/tuple_clips', tuple_clips[:, i, :, :, :, :], i, fps=8)
tuple_clips = tuple_clips.to(device)
writer.add_graph(vcpn, tuple_clips)
break
# save init params at step 0
for name, param in vcpn.named_parameters():
writer.add_histogram('params/{}'.format(name), param, 0)
### loss funciton, optimizer and scheduler ###
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(vcpn.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.wd)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', min_lr=1e-5, patience=50, factor=0.1)
prev_best_val_loss = float('inf')
prev_best_model_path = None
for epoch in range(args.start_epoch, args.start_epoch+args.epochs):
time_start = time.time()
train(args, vcpn, criterion, optimizer, device, train_dataloader, writer, epoch)
print('[{0:3d}/{1:3d}]Epoch time: {2:.2f} s.'.format(epoch, args.epochs, time.time() - time_start))
val_loss = validate(args, vcpn, criterion, device, val_dataloader, writer, epoch)
# scheduler.step(val_loss)
writer.add_scalar('train/lr', optimizer.param_groups[0]['lr'], epoch)
# save model every 20 epoches
if epoch % 20 == 0:
torch.save(vcpn.state_dict(), os.path.join(log_dir, 'model_{}.pt'.format(epoch)))
# save model for the best val
if val_loss < prev_best_val_loss:
model_path = os.path.join(log_dir, 'best_model_{}.pt'.format(epoch))
torch.save(vcpn.state_dict(), model_path)
prev_best_val_loss = val_loss
if prev_best_model_path:
os.remove(prev_best_model_path)
prev_best_model_path = model_path
elif args.mode == 'test': ########### Test #############
vcpn.load_state_dict(torch.load(args.ckpt))
test_transforms = transforms.Compose([
transforms.Resize((128, 171)),
transforms.CenterCrop(112),
transforms.ToTensor()
])
test_dataset = UCF101VCPDataset('data/', args.cl, args.it, args.tl, False, test_transforms)
test_dataloader = DataLoader(test_dataset, batch_size=args.bs, shuffle=False,
num_workers=args.workers, pin_memory=True)
print('TEST video number: {}.'.format(len(test_dataset)))
criterion = nn.CrossEntropyLoss()
test(args, vcpn, criterion, device, test_dataloader)