-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.R
983 lines (543 loc) · 38.7 KB
/
app.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
shinyApp(
ui = tagList(
shinythemes::themeSelector(),# <---- this is pop up to display different theme options
navbarPage(
# theme = "cerulean",
"CA ONE",
tabPanel("Linear Regression ", #<-------- Title of app
sidebarPanel(
selectInput("ds", "Data Source :", #<---------- ds is the variable use to store data from file or in build data set of R
c("File" = "file", #<------- it will take dataset fro file and store in "File" variable
"In-Build" = "ib" #<----------- it will use the R studio dataset and store it in "In-Build" variable
)),
conditionalPanel( #<------ this defines the functionality of selected Data Source
condition = "input.ds == 'file'", #<-------- It ill work if the user select the data set from the file
fileInput("datafile", "Choose CSV File", #<--- it will promt the user to insert CV file and store it in datafile
multiple = FALSE, #<--------- it will check for multiplicity whih is set false.
accept = c("text/csv", #<---------- it will check for the format of file that is uploaded
"text/comma-separated-values,text/plain",
".csv"))
),
conditionalPanel(
condition = "input.ds == 'ib'",
selectInput(inputId = "ib", label = "Select a DataSet", choices = ls("package:datasets")) #<-it will use the in build dataset by package::datasets and list it out using ls finction
),
selectInput(inputId = "tarvar", label = "Select a Target Variable", choices = ""), #<--- it will allow the user to set target variable and it will not allow user to have multiple target variable at a given time
selectInput(inputId = "indvar", label = "Select Independent Variables", multiple = TRUE, choices = ""), #<--- this funtion will allow the user to enter mutilple variable
#this is a slider input with range 1 to 100 and default value is 45
sliderInput("ratio", "Ratio for trainset", min = 1, max = 100, value = 45 ),
uiOutput("Input_Ind")
),
mainPanel( #<---- this is the main funtion
tabsetPanel(type = "tabs", #<---- this the defination of the various tabs
tabPanel("Data Set", DT::dataTableOutput("extdata")), #<-- it will give the table of the dataset of selected file or data
tabPanel("Selected ", DT::dataTableOutput("selData")), #<--- it will display the table of selected coloum i.e. target and independent variable
tabPanel("Test/Predicted", plotOutput("glmperf")), #<--- it will give the graphical representation of real vs predectied value
tabPanel("RMSE", DT::dataTableOutput("RMSE")), #<--- this wil show the rmse value
tabPanel("SVM", DT::dataTableOutput("SVM"))
)
)
),
##############################################################################
# CONTINOUS MODEL
tabPanel("Continous", sidebarPanel(
selectInput("conmodel", "Select Model", #<----THREE continous model options
choices = c("Normal" = "normal",
"Exponential" = "exponential",
"Uniform" = "uniform"),
selected = "exponential" #<--exponential is selected by default
),
# slider input with range from 1 to 100 and 35 as a set value
sliderInput("s", "number of simulated data" ,min=1, max=1000, value = 35),
# condition check
# for exponential model lamda value
conditionalPanel(
condition = "input.conmodel == 'exponential'",
numericInput("lam", "parameter lambda in exponential" ,min=0, max=10, value = 1)
),
# condition check
# for normal model mu and sigma value with set value 0 and 1 respectively
conditionalPanel(
condition = "input.conmodel == 'normal'",
numericInput("mu", "parameter mu in Normal" , value = 0),
numericInput("sigma", "parameter sigma in Normal" , value = 1)
),
numericInput("i", "support" , value = 2),
# j1 value set to ZERO for normal model
conditionalPanel(
condition = "input.conmodel == 'normal'",
numericInput("j1", "j in Normal" , value = 0)
),
# j2 value set to Zero for exponential
conditionalPanel(
condition = "input.conmodel == 'exponential'",
numericInput("j2", "j in exponential" , value = 0)
),
## condition check
# for uniform model with vaue of a and b as -1 and 0.5 respectively
conditionalPanel(
condition = "input.conmodel == 'uniform'",
numericInput("a", "parameter a in Normal" , value = -1),
numericInput("b", "parameter b in Normal" , value = 0.5)
)
),
###### Main function for Continous model
mainPanel(
plotOutput("histogram1"),
tableOutput('tab1'),
tableOutput('prob')
)),
##########################################################
# K-MEANS
tabPanel("K-means",
sidebarLayout(
sidebarPanel(
h3("Filtering data"),
# options for selection of data set
selectInput("dataset", "Choose a dataset (or a subset) :",
choices = c("all iris data", "setosa", "versicolor", "virginica")),
# option for selecion of X Variable
selectInput("Xvar", "X variable",
choices = c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width")),
# option for selecion of y Variable
selectInput("Yvar", "Y variable",
choices = c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"), selected = "Sepal.Width"),
# Number of observatio to view pannel
numericInput("obs", "Number of observations to view on table:", 10),
h3("K-Means"),
# cluster count pannel from 1 to 9
numericInput("clusters", "Cluster count", 3, min = 1, max = 9),
h3("DBSCAN"),
#Epsilon
sliderInput("eps", "Radius of neighborhood of each point", min = 0.0, max = 1.0, value = 0.2),
sliderInput("minPoints", "Number of neighbors within the eps radius", min = 0, max = 10, value = 3)
),
# MainPanel divided into many tabPanel
mainPanel(
tabsetPanel(
############### DIffrent tabs for diffrent operation
tabPanel("Plot", h1("Scatterplot"), plotOutput("simplePlot"), h1("Boxplot"), plotOutput("boxPlot")),
tabPanel("Descriptive statistics", h1("Descriptive statistics"),verbatimTextOutput("summary")),
tabPanel("Table", h1("Table"), textOutput("NbRows"), tableOutput("view")),
tabPanel("Clustering", h1("K-Means"), textOutput("NbClust"), plotOutput("kmeansPlot"),
h1("Density-based cluster (DBSCAN)"), textOutput("dbscan_Param"), plotOutput("dbscanPlot"),
h1("Decision tree"), plotOutput("treePlot"))
)
)
)
),
tabPanel("Discreate Analysis", #<-- This will reate another tab for Discreate Analysis
sidebarPanel(
selectInput("dismodel", "Select Model", #<--- it wil give user options among various discrete model
choices = c("Binomial" = "binomial", #<-- selected option will be store in choice variable
"Poisson" = "poisson",
"Bernoulli" = "bernoulli",
"Hypergeometric" = "hypergeometric",
"Geometric" = "geometric"),
selected = "poisson"#<-- by default we have selected to poission model
),
conditionalPanel( #<- function for binomial model
condition = "input.dismodel == 'binomial'",
numericInput("n", "parameter n in Binomial" , value = 10), #<- we have set value to 10
numericInput("p", "parameter p in Binomial" , value = 1) #<- we have set value to 1
),
conditionalPanel(
condition = "input.dismodel == 'bernoulli'",
# Slider input for the probability of successful trail
sliderInput("p", "Probability of successful trail(p)", min=0, max=1, step = 0.01, value = 0.5)
),
conditionalPanel(
condition = "input.dismodel == 'hypergeometric'",
numericInput("m", "M" , value = 10),
numericInput("n", "N" , value = 20),
numericInput("k", "K" , value = 5)
),
conditionalPanel( #<- condtion check for POISSION DATASET
condition = "input.dismodel == 'poisson'",
numericInput("lam", "parameter lambda in Poisson" , value = 1) #<- we have set value of lambda to 1 by-defult
),
conditionalPanel( #<- condition Check for Geomertic model
condition = "input.dismodel == 'geometric'",
numericInput("p", "parameter p in Geometric" , value = 0.5) #<- we have set value of p to 0.5 by-defult
),
numericInput("max", "upper limit for x" , value = 5), #<- upper limit is set 5
sliderInput("s", "number of simulated data" ,min=1, max=1000, value = 45), #<- Slider with range of 1 to 100 with set value as 45
# j1 value set to one for binomial
conditionalPanel(
condition = "input.dismodel == 'binomial'",
numericInput("j1", "j for Bin" , value = 1)
),
# j2 value set to one for poisson
conditionalPanel(
condition = "input.dismodel == 'poisson'",
numericInput("j2", "j for Poisson" , value = 1)
),
# j3 value set to one for geometric
conditionalPanel(
condition = "input.dismodel == 'geometric'",
numericInput("j3", "j for geometric" , value = 1)
)
),
mainPanel(
plotOutput("histogram"), #<- it will plot histogram on above input values
tableOutput('tab')
))
)
),
#this is a server function
server = function(input, output,session) {
RMSE <- 0 #<- initialising RMSE to zero
SVM <- 0
values <- reactiveValues()
myData <- reactive({
switch(input$ds,
file = { #<---- function for the data selection
file1 <- input$datafile #<-- it will store the value of dataset into file1 variable using input funtion
if (is.null(file1)) {
return() #<-- if File slected is not present then it will return null
}
data = read.csv(file=file1$datapath) #<-- otherwise it will load the data set in the data using the path
},
ib = { #<-- it will load the in build data set of R studio into file1 variable
data = data.frame(get(input$ib))
},
)
return(data)
})
observe({
updateSelectInput(session, "indvar", #<-- the entered indipenedent variables will be store here
choices = colnames(myData()))#<-- coloums name from a given data set is stored in choices
updateSelectInput(session, "tarvar", #<-- value of target variable will be store here and accessed through session
choices = colnames(myData())) #<-- target coloum name
})
output$extdata = DT::renderDataTable({ #<-------- this is the data table function in R
DT::datatable(myData(), options = list(lengthChange = TRUE)) #<--- change the number of records per page with the help of lengthchange
})
output$glmperf <- renderPlot({ #<---- Output of Glm will be represented in graphical way
df <- na.omit(myData()) #<-- Cleaning of given dataset using na.omit function
TarIndData <- cbind(df[,input$tarvar],df[,input$indvar]) #<-- binding the target variable and independent variable into 'TarIndData'
colnames(TarIndData) = c(input$tarvar,input$indvar)
colnames(TarIndData)[1] <- "Y"
set.seed(199) #<-- setting a seed value 199
n=nrow(TarIndData) #<- number of row will be store in 'n'
indexes = sample(n,n*(input$ratio/100)) #<--- it will give the value ration of trainset data on the bases of user inpur value for ratio
trainset = data.frame(TarIndData[indexes,])
testset = data.frame(TarIndData[-indexes,]) #<-- subtracting user ratio value from 100 will give the testset ratio
actual <- testset$Y #<-- Setting the actual variale to 'Y' of testset
pred_test <- data.frame(testset)
#############################################################################
#svr <- svm(Y~ ., data=trainset, method='eps-regression')
#test set predictions linear
#pred_test_svr <-predict(svr,testset)
#mse2=(sum(pred_test_svr-testset$Y)^2)/(n[1]-n[2])
#rmse2=sqrt(mse2)
#values$svm_lin <- rmse2
#################################################################################
full.model <- glm(Y ~., data = trainset, family='gaussian') #<-- Appying full model glm on 'Y'
summary(full.model)
values$full <- full.model
pred_full <- predict( full.model, testset[,input$indvar]) #<--- predicting the value of full model
rmse_full = sqrt(sum((pred_full -actual)^2)/(nrow(testset))) #<--getting the RMSE of full model
#Applying RMSE on reduce model
reduced.model=stepAIC(full.model) #<-- using stepAIC function on full model
values$full <- full.model
values$reduced <- reduced.model
pred_red = predict( reduced.model, testset[,input$indvar]) #<-- predicting value on reduce model
rmse_red = sqrt(sum((pred_red -actual)^2)/(nrow(testset)))
values$rmse <- data.frame('Full'=rmse_full,'Reduced'=rmse_red) #<- geting the rmse value on reduce model
par(mfrow=c(1,2))
################################################
# graph on Full model
plot(actual,type = "o",col = "red", xlab = "Observations", ylab = input$tarvar,
main = "FULL") #<-- it will represent the actual data in red colour and mark x as observation and y axis as target variable name
lines(pred_full, type = "o", col = "blue") #<-- blue colour is used to represent predicted value
legend( #<-- it is used to create box onthe top left corner of graph to give info about red and blue colour line
"topleft",
lty=c(1,1),
col=c("red", "blue"),
legend = c("Real", "Predicted")
)
###############################################################
# graph on reduce model
plot(actual,type = "o",col = "red", xlab = "Observations", ylab = input$tarvar,
main = "Reduced")
lines(pred_red, type = "o", col = "blue")
legend(
"topleft",
lty=c(1,1),
col=c("red", "blue"),
legend = c("Real", "Predicted")
)
})
########################################
#OUTPUT of SLECTE DATA i.e. Target variable and Independent Variable
output$selData <- DT::renderDataTable({
df <- myData()
TarIndData <- cbind(df[,input$tarvar],df[,input$indvar])
colnames(TarIndData) = c(input$tarvar,input$indvar)
DT::datatable(TarIndData, options = list(lengthChange = TRUE))
})
#######################################################
output$SVM <- DT::renderDataTable({
DT::datatable(values$svm_lin, options = list(lengthChange = TRUE))
})
#######################################################
# OUTPUT FOR RMSE tab
output$RMSE <- DT::renderDataTable({
DT::datatable(values$rmse, options = list(lengthChange = TRUE))
})
output$Input_Ind <- renderUI({
Var_count <- 0
Var_count <- length(input$indvar)
max_val <- 500 # default 5000
if (Var_count != 0) {
lapply(1:Var_count, function(i) {
numericInput(inputId = paste0(input$indvar[i]), label = input$indvar[i],value = 0)
})
}
})
# predective value for new value or run time value
forecast_out <- reactive({
Var_Count <- length(input$indvar)
new_data <- as.numeric(paste(lapply(1:Var_Count, function(i) {
inputName <- paste0(input$indvar[i])
input[[inputName]]
})))
# taking the input in df formate
input_data <- data.frame(t(new_data))
for (i in 1:Var_Count)
{
colnames(input_data)[i] <- input$indvar[i]
}
####################################################
# value of new predicted value for reduce and full model
new_predict_full <- predict(values$full,input_data)
new_predict_red <- predict(values$reduced,input_data)
#### using new value of reduce and full model for prediction and storing it in pred_data_new
pred_data_new <- data.frame(new_predict_full,new_predict_red)
colnames(pred_data_new)[1] <- paste('Full Mode - ',input$tarvar)
colnames(pred_data_new)[2] <- paste('Reduced Mode - ',input$tarvar)
return(pred_data_new)
})
###############################################################################
output$histogram <- renderPlot({ #<---- Output of various discrete model in graphical way
# Algorithm for binomial model
if (input$dismodel == 'binomial') {
par(mfrow=c(1,2))
d <- density(rbinom(1000,input$n,input$p)) #<-- rbinom is a binomial function
plot(d, main="Kernel Density of generated data")
polygon(d, col="red", border="blue")
x=0:input$n
plot(x,dbinom(x,input$n,input$p))
}
if (input$dismodel == 'bernoulli') {
par(mfrow=c(1,2))
Density <- density(rbinom(input$s,1,input$p))
plot(Density, main="Kernel Density of generated data")
polygon(Density, col="red", border="blue")
x=0:1
plot(x,dbinom(x,1,input$p))
}
# hypergeometric
if (input$dismodel == 'hypergeometric') {
par(mfrow=c(1,2))
D=rhyper(nn=input$s, m=input$m, n=input$n, k=rep(input$k, input$s))
tab=table(D)
barplot(tab,col='blue')
x2=0:input$s
y2=dhyper(x2, m=input$m, n=input$n, k=input$k, log=FALSE)
plot(x2,y2,type='b')
}
# Algorithm for poisson model
if (input$dismodel == 'poisson') {
par(mfrow=c(1,2))
D=rpois(input$s, input$lam) #<-poisson function
tab=table(D) #<- putting the value in table function
barplot(tab,col='blue')
x1=0:input$max
y1=dpois(x1,input$lam)
plot(x1,y1,type='b')
}
# for geometric model
if (input$dismodel == 'geometric') {
par(mfrow=c(1,2))
D=rgeom(input$s, input$p) #<-- rgeom id geometric function
tab=table(D)
barplot(tab,col='blue')
x2=0:input$max
y2=dgeom(x2,input$p)
plot(x2,y2,type='b')
}
})
###########################################################
# Otput of various model
output$histogram1 <- renderPlot({
# normal model
if (input$conmodel == 'normal') {
par(mfrow=c(1,2))
x=seq(-input$i,input$i,0.01)
plot(x,dnorm(x,input$mu,input$sigma),type='l', col='red')
}
# exponential model
if (input$conmodel == 'exponential') {
# exponential
par(mfrow=c(1,2))
x=seq(0,input$i,0.01)
plot(x,dexp(x,input$lam),type='l',col='green')
}
# uniform model
if (input$conmodel == 'uniform') {
a <- input$a
b <- input$b
n1 <- input$s
rand.unif <- runif(n1, min = a, max = b) #<--- uniform function
hist(rand.unif, #<---- histogram function for uniform model
freq = FALSE,
xlab = 'x',
ylim = c(0, 0.4),
xlim = c(-3,3),
density = 20,
main = "Uniform distribution")
curve(dunif(x, min = a, max = b),
from = -3, to = 3,
n = n1,
col = "darkblue",
lwd = 2,
add = TRUE,
yaxt = "n",
ylab = 'probability')
}
})
#########output of prob for various model
output$prob <- renderPrint({
p1=pnorm(input$j1,input$mu, input$sigma)
p2=pexp(input$j2,input$lam)
if (input$conmodel == 'exponential') {
c(p2)
}
if (input$conmodel == 'normal') {
c(p1)
}
})
output$tab1 <- renderTable({
Normal=rnorm(input$s,input$mu, input$sigma)
Exp=rexp(input$s,input$lam)
if (input$conmodel == 'exponential') {
d2=data.frame(Exp)
}
else
{
d1=data.frame(Normal)
}
})
output$tab <- renderTable({
p1=dbinom(input$j1,input$n, input$p) #<<<---------Binomal table output
p2=dpois(input$j2,input$lam) #<<<---------Pisson table output
p3=dgeom(input$j3,input$p) #<<<---------Geometric table output
c(p1,p2,p3)
})
datasetInput <- reactive({
########## Switch operator amoung various dataset
switch(input$dataset,
"all iris data" = iris,
"setosa" = subset(iris, iris$Species == "setosa"),
"versicolor" = subset(iris, iris$Species == "versicolor"),
"virginica" = subset(iris, iris$Species == "virginica"))
})
colX <- reactive({
########## Switch operator amoung various X Variable input
switch(input$Xvar,
"Sepal.Length" = iris$Sepal.Length,
"Sepal.Width" = iris$Sepal.Width,
"Petal.Length" = iris$Petal.Length,
"Petal.Width" = iris$Petal.Width)
})
colY <- reactive({
########## Switch operator amoung various Y variable Input
switch(input$Yvar,
"Sepal.Length" = iris$Sepal.Length,
"Sepal.Width" = iris$Sepal.Width,
"Petal.Length" = iris$Petal.Length,
"Petal.Width" = iris$Petal.Width)
})
#### Clusturing
clusters <- reactive({
kmeans(iris[,1:4], input$clusters) #<--- clustering on 1 to 4 coloum
})
myColors <- reactive({
switch(input$dataset,
"all iris data" = c(palette()[1],palette()[2],palette()[3]),
"setosa" = palette()[1],
"versicolor" = palette()[2],
"virginica" = palette()[3])
})
# Generate a summary of the dataset (or subset by Iris.Species)
output$summary <- renderPrint({
dataset <- datasetInput()
summary(dataset)
})
# Show the first n observations
output$view <- renderTable({
head(datasetInput(), n = input$obs)
})
output$NbRows <- renderText({
paste("You have selected to show ", input$obs," lines.")
})
# Show a simple x,y plot
output$simplePlot <- renderPlot({
df_iris <- datasetInput() #<------- storing dataset in df formate
plot(df_iris[,c(input$Xvar,input$Yvar)], xlab = input$Xvar, ylab = input$Yvar,
main=toupper(ifelse(input$dataset == "all iris data", "iris", input$dataset)), pch=16, cex = 2,
col = ifelse(df_iris$Species == "setosa", palette()[1],
ifelse(df_iris$Species == "versicolor", palette()[2], palette()[3])) )
legend("bottomright", legend = unique(df_iris[,5]),
col = myColors(), title = expression(bold("Iris.Species")),
pch = 16, bty = "n", pt.cex = 2,
cex = 0.8, text.col = "black", horiz = FALSE, inset = c(0.05, 0.05))
})
# Show boxplot
output$boxPlot <- renderPlot({
df_iris <- datasetInput()
if (input$dataset == "all iris data") {
boxplot(df_iris[,c(input$Yvar)] ~ df_iris[,5], xlab = "Species", ylab = input$Yvar, main = "IRIS",
border = "black", col = myColors())
}
else {
boxplot(df_iris[,c(input$Yvar)], xlab = "Species", ylab = input$Yvar, main = toupper(input$dataset),
border = "black", col = myColors())
}
})
# K-Means Plot
output$NbClust <- renderText({
paste("K-means clustering performed with ", input$clusters," clusters.")
})
output$kmeansPlot <- renderPlot({
plot(iris[,c(input$Xvar,input$Yvar)],
col = clusters()$cluster,
pch = 20, cex = 2)
points(clusters()$centers, pch = 4, cex = 4, lwd = 4)
})
# Density-based cluster
output$dbscan_Param <- renderText({
paste("DBSCAN clustering performed with eps = ", input$eps," and minPts = ", input$minPoints,".")
})
output$dbscanPlot <- renderPlot({
cluster <- dbscan(iris[,-5], eps = input$eps, MinPts = input$minPoints)
plot(cluster, iris[,c(input$Xvar, input$Yvar)])
})
# Decision Tree
output$treePlot <- renderPlot({
ctree <- ctree(Species ~ ., data = iris)
plot(ctree, type="simple")
})
# Create a .csv file with dataframe inside
output$downloadData <- downloadHandler(
filename = function() {
paste('data-Iris-', Sys.Date(), '.csv', sep='')
},
content = function(con) {
write.csv(iris, con)
}
)
}
)