forked from weidai11/cryptopp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
chacha.cpp
568 lines (474 loc) · 19.5 KB
/
chacha.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
// chacha.cpp - written and placed in the public domain by Jeffrey Walton.
// Based on Wei Dai's Salsa20, Botan's SSE2 implementation,
// and Bernstein's reference ChaCha family implementation at
// http://cr.yp.to/chacha.html.
#include "pch.h"
#include "config.h"
#include "chacha.h"
#include "argnames.h"
#include "misc.h"
#include "cpu.h"
// Internal compiler error in GCC 3.3 and below
#if defined(__GNUC__) && (__GNUC__ < 4)
# undef CRYPTOPP_SSE2_INTRIN_AVAILABLE
#endif
NAMESPACE_BEGIN(CryptoPP)
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
extern void ChaCha_OperateKeystream_NEON(const word32 *state, const byte* input, byte *output, unsigned int rounds);
#endif
#if (CRYPTOPP_AVX2_AVAILABLE)
extern void ChaCha_OperateKeystream_AVX2(const word32 *state, const byte* input, byte *output, unsigned int rounds);
#endif
#if (CRYPTOPP_SSE2_INTRIN_AVAILABLE)
extern void ChaCha_OperateKeystream_SSE2(const word32 *state, const byte* input, byte *output, unsigned int rounds);
#endif
#if (CRYPTOPP_ALTIVEC_AVAILABLE)
extern void ChaCha_OperateKeystream_ALTIVEC(const word32 *state, const byte* input, byte *output, unsigned int rounds);
#endif
#if defined(CRYPTOPP_DEBUG) && !defined(CRYPTOPP_DOXYGEN_PROCESSING)
void ChaCha_TestInstantiations()
{
ChaCha::Encryption x;
ChaChaTLS::Encryption y;
XChaCha20::Encryption z;
}
#endif
NAMESPACE_END // CryptoPP
////////////////////////////// ChaCha Core //////////////////////////////
#define CHACHA_QUARTER_ROUND(a,b,c,d) \
a += b; d ^= a; d = rotlConstant<16,word32>(d); \
c += d; b ^= c; b = rotlConstant<12,word32>(b); \
a += b; d ^= a; d = rotlConstant<8,word32>(d); \
c += d; b ^= c; b = rotlConstant<7,word32>(b);
#define CHACHA_OUTPUT(x){\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 0, x0 + state[0]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 1, x1 + state[1]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 2, x2 + state[2]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 3, x3 + state[3]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 4, x4 + state[4]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 5, x5 + state[5]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 6, x6 + state[6]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 7, x7 + state[7]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 8, x8 + state[8]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 9, x9 + state[9]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 10, x10 + state[10]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 11, x11 + state[11]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 12, x12 + state[12]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 13, x13 + state[13]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 14, x14 + state[14]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 15, x15 + state[15]);}
ANONYMOUS_NAMESPACE_BEGIN
// Hacks... Bring in all symbols, and supply
// the stuff the templates normally provide.
using namespace CryptoPP;
typedef word32 WordType;
enum {BYTES_PER_ITERATION=64};
// MultiBlockSafe detects a condition that can arise in the SIMD
// implementations where we overflow one of the 32-bit state words during
// addition in an intermediate result. Preconditions for the issue include
// a user seeks to around 2^32 blocks (256 GB of data) for ChaCha; or a
// user specifies an arbitrarily large initial counter block for ChaChaTLS.
// Also see https://github.com/weidai11/cryptopp/issues/732.
inline bool MultiBlockSafe(unsigned int ctrLow, unsigned int blocks)
{
return 0xffffffff - ctrLow > blocks;
}
// OperateKeystream always produces a key stream. The key stream is written
// to output. Optionally a message may be supplied to xor with the key stream.
// The message is input, and output = output ^ input.
void ChaCha_OperateKeystream(KeystreamOperation operation,
word32 state[16], word32& ctrLow, word32& ctrHigh, word32 rounds,
byte *output, const byte *input, size_t iterationCount)
{
do
{
#if (CRYPTOPP_AVX2_AVAILABLE)
if (HasAVX2())
{
while (iterationCount >= 8 && MultiBlockSafe(state[12], 8))
{
const bool xorInput = (operation & EnumToInt(INPUT_NULL)) != EnumToInt(INPUT_NULL);
ChaCha_OperateKeystream_AVX2(state, xorInput ? input : NULLPTR, output, rounds);
// MultiBlockSafe avoids overflow on the counter words
state[12] += 8;
input += (!!xorInput) * 8 * BYTES_PER_ITERATION;
output += 8 * BYTES_PER_ITERATION;
iterationCount -= 8;
}
}
#endif
#if (CRYPTOPP_SSE2_INTRIN_AVAILABLE)
if (HasSSE2())
{
while (iterationCount >= 4 && MultiBlockSafe(state[12], 4))
{
const bool xorInput = (operation & EnumToInt(INPUT_NULL)) != EnumToInt(INPUT_NULL);
ChaCha_OperateKeystream_SSE2(state, xorInput ? input : NULLPTR, output, rounds);
// MultiBlockSafe avoids overflow on the counter words
state[12] += 4;
input += (!!xorInput)*4*BYTES_PER_ITERATION;
output += 4*BYTES_PER_ITERATION;
iterationCount -= 4;
}
}
#endif
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
if (HasNEON())
{
while (iterationCount >= 4 && MultiBlockSafe(state[12], 4))
{
const bool xorInput = (operation & EnumToInt(INPUT_NULL)) != EnumToInt(INPUT_NULL);
ChaCha_OperateKeystream_NEON(state, xorInput ? input : NULLPTR, output, rounds);
// MultiBlockSafe avoids overflow on the counter words
state[12] += 4;
input += (!!xorInput)*4*BYTES_PER_ITERATION;
output += 4*BYTES_PER_ITERATION;
iterationCount -= 4;
}
}
#endif
#if (CRYPTOPP_ALTIVEC_AVAILABLE)
if (HasAltivec())
{
while (iterationCount >= 4 && MultiBlockSafe(state[12], 4))
{
const bool xorInput = (operation & EnumToInt(INPUT_NULL)) != EnumToInt(INPUT_NULL);
ChaCha_OperateKeystream_ALTIVEC(state, xorInput ? input : NULLPTR, output, rounds);
// MultiBlockSafe avoids overflow on the counter words
state[12] += 4;
input += (!!xorInput)*4*BYTES_PER_ITERATION;
output += 4*BYTES_PER_ITERATION;
iterationCount -= 4;
}
}
#endif
if (iterationCount)
{
word32 x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15;
x0 = state[0]; x1 = state[1]; x2 = state[2]; x3 = state[3];
x4 = state[4]; x5 = state[5]; x6 = state[6]; x7 = state[7];
x8 = state[8]; x9 = state[9]; x10 = state[10]; x11 = state[11];
x12 = state[12]; x13 = state[13]; x14 = state[14]; x15 = state[15];
for (int i = static_cast<int>(rounds); i > 0; i -= 2)
{
CHACHA_QUARTER_ROUND(x0, x4, x8, x12);
CHACHA_QUARTER_ROUND(x1, x5, x9, x13);
CHACHA_QUARTER_ROUND(x2, x6, x10, x14);
CHACHA_QUARTER_ROUND(x3, x7, x11, x15);
CHACHA_QUARTER_ROUND(x0, x5, x10, x15);
CHACHA_QUARTER_ROUND(x1, x6, x11, x12);
CHACHA_QUARTER_ROUND(x2, x7, x8, x13);
CHACHA_QUARTER_ROUND(x3, x4, x9, x14);
}
CRYPTOPP_KEYSTREAM_OUTPUT_SWITCH(CHACHA_OUTPUT, BYTES_PER_ITERATION);
// This is state[12] and state[13] from ChaCha. In the case of
// ChaChaTLS ctrHigh is a reference to a discard value.
if (++ctrLow == 0)
ctrHigh++;
}
// We may re-enter a SIMD keystream operation from here.
} while (iterationCount--);
}
// XChaCha key derivation
void HChaCha_OperateKeystream(const word32 state[16], word32 output[8])
{
word32 x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15;
x0 = state[0]; x1 = state[1]; x2 = state[2]; x3 = state[3];
x4 = state[4]; x5 = state[5]; x6 = state[6]; x7 = state[7];
x8 = state[8]; x9 = state[9]; x10 = state[10]; x11 = state[11];
x12 = state[12]; x13 = state[13]; x14 = state[14]; x15 = state[15];
for (int i = 20; i > 0; i -= 2)
{
CHACHA_QUARTER_ROUND(x0, x4, x8, x12);
CHACHA_QUARTER_ROUND(x1, x5, x9, x13);
CHACHA_QUARTER_ROUND(x2, x6, x10, x14);
CHACHA_QUARTER_ROUND(x3, x7, x11, x15);
CHACHA_QUARTER_ROUND(x0, x5, x10, x15);
CHACHA_QUARTER_ROUND(x1, x6, x11, x12);
CHACHA_QUARTER_ROUND(x2, x7, x8, x13);
CHACHA_QUARTER_ROUND(x3, x4, x9, x14);
}
output[0] = x0; output[1] = x1;
output[2] = x2; output[3] = x3;
output[4] = x12; output[5] = x13;
output[6] = x14; output[7] = x15;
}
std::string ChaCha_AlgorithmProvider()
{
#if (CRYPTOPP_AVX2_AVAILABLE)
if (HasAVX2())
return "AVX2";
else
#endif
#if (CRYPTOPP_SSE2_INTRIN_AVAILABLE)
if (HasSSE2())
return "SSE2";
else
#endif
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
if (HasNEON())
return "NEON";
else
#endif
#if (CRYPTOPP_ALTIVEC_AVAILABLE)
if (HasAltivec())
return "Altivec";
else
#endif
return "C++";
}
unsigned int ChaCha_GetAlignment()
{
#if (CRYPTOPP_AVX2_AVAILABLE)
if (HasAVX2())
return 16;
else
#endif
#if (CRYPTOPP_SSE2_INTRIN_AVAILABLE)
if (HasSSE2())
return 16;
else
#endif
#if (CRYPTOPP_ALTIVEC_AVAILABLE)
if (HasAltivec())
return 16;
else
#endif
return GetAlignmentOf<word32>();
}
unsigned int ChaCha_GetOptimalBlockSize()
{
#if (CRYPTOPP_AVX2_AVAILABLE)
if (HasAVX2())
return 8 * BYTES_PER_ITERATION;
else
#endif
#if (CRYPTOPP_SSE2_INTRIN_AVAILABLE)
if (HasSSE2())
return 4*BYTES_PER_ITERATION;
else
#endif
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
if (HasNEON())
return 4*BYTES_PER_ITERATION;
else
#endif
#if (CRYPTOPP_ALTIVEC_AVAILABLE)
if (HasAltivec())
return 4*BYTES_PER_ITERATION;
else
#endif
return BYTES_PER_ITERATION;
}
ANONYMOUS_NAMESPACE_END
NAMESPACE_BEGIN(CryptoPP)
////////////////////////////// Bernstein ChaCha //////////////////////////////
std::string ChaCha_Policy::AlgorithmName() const
{
return std::string("ChaCha")+IntToString(m_rounds);
}
std::string ChaCha_Policy::AlgorithmProvider() const
{
return ChaCha_AlgorithmProvider();
}
void ChaCha_Policy::CipherSetKey(const NameValuePairs ¶ms, const byte *key, size_t length)
{
CRYPTOPP_ASSERT(key); CRYPTOPP_ASSERT(length == 16 || length == 32);
CRYPTOPP_UNUSED(key); CRYPTOPP_UNUSED(length);
// Use previous rounds as the default value
int rounds = params.GetIntValueWithDefault(Name::Rounds(), m_rounds);
if (rounds != 20 && rounds != 12 && rounds != 8)
throw InvalidRounds(ChaCha::StaticAlgorithmName(), rounds);
// Latch a good value
m_rounds = rounds;
// "expand 16-byte k" or "expand 32-byte k"
m_state[0] = 0x61707865;
m_state[1] = (length == 16) ? 0x3120646e : 0x3320646e;
m_state[2] = (length == 16) ? 0x79622d36 : 0x79622d32;
m_state[3] = 0x6b206574;
GetBlock<word32, LittleEndian> get1(key);
get1(m_state[4])(m_state[5])(m_state[6])(m_state[7]);
GetBlock<word32, LittleEndian> get2(key + ((length == 32) ? 16 : 0));
get2(m_state[8])(m_state[9])(m_state[10])(m_state[11]);
}
void ChaCha_Policy::CipherResynchronize(byte *keystreamBuffer, const byte *IV, size_t length)
{
CRYPTOPP_UNUSED(keystreamBuffer), CRYPTOPP_UNUSED(length);
CRYPTOPP_ASSERT(length==8); CRYPTOPP_UNUSED(length);
GetBlock<word32, LittleEndian> get(IV);
m_state[12] = m_state[13] = 0;
get(m_state[14])(m_state[15]);
}
void ChaCha_Policy::SeekToIteration(lword iterationCount)
{
m_state[12] = (word32)iterationCount; // low word
m_state[13] = (word32)SafeRightShift<32>(iterationCount);
}
unsigned int ChaCha_Policy::GetAlignment() const
{
return ChaCha_GetAlignment();
}
unsigned int ChaCha_Policy::GetOptimalBlockSize() const
{
return ChaCha_GetOptimalBlockSize();
}
void ChaCha_Policy::OperateKeystream(KeystreamOperation operation,
byte *output, const byte *input, size_t iterationCount)
{
ChaCha_OperateKeystream(operation, m_state, m_state[12], m_state[13],
m_rounds, output, input, iterationCount);
}
////////////////////////////// IETF ChaChaTLS //////////////////////////////
std::string ChaChaTLS_Policy::AlgorithmName() const
{
return std::string("ChaChaTLS");
}
std::string ChaChaTLS_Policy::AlgorithmProvider() const
{
return ChaCha_AlgorithmProvider();
}
void ChaChaTLS_Policy::CipherSetKey(const NameValuePairs ¶ms, const byte *key, size_t length)
{
CRYPTOPP_ASSERT(key); CRYPTOPP_ASSERT(length == 32);
CRYPTOPP_UNUSED(length);
// ChaChaTLS is always 20 rounds. Fetch Rounds() to avoid a spurious failure.
int rounds = params.GetIntValueWithDefault(Name::Rounds(), ROUNDS);
if (rounds != 20)
throw InvalidRounds(ChaChaTLS::StaticAlgorithmName(), rounds);
// RFC 8439 test vectors use an initial block counter. However, the counter
// can be an arbitrary value per RFC 8439 Section 2.4. We stash the counter
// away in state[16] and use it for a Resynchronize() operation. I think
// the initial counter is used more like a Tweak when non-0, and it should
// be provided in Resynchronize() (light-weight re-keying). However,
// Resynchronize() does not have an overload that allows us to pass it into
// the function, so we have to use the heavier-weight SetKey to change it.
word64 block;
if (params.GetValue("InitialBlock", block))
m_counter = static_cast<word32>(block);
else
m_counter = 0;
// State words are defined in RFC 8439, Section 2.3. Key is 32-bytes.
GetBlock<word32, LittleEndian> get(key);
get(m_state[KEY+0])(m_state[KEY+1])(m_state[KEY+2])(m_state[KEY+3])
(m_state[KEY+4])(m_state[KEY+5])(m_state[KEY+6])(m_state[KEY+7]);
}
void ChaChaTLS_Policy::CipherResynchronize(byte *keystreamBuffer, const byte *IV, size_t length)
{
CRYPTOPP_UNUSED(keystreamBuffer), CRYPTOPP_UNUSED(length);
CRYPTOPP_ASSERT(length==12);
// State words are defined in RFC 8439, Section 2.3.
m_state[0] = 0x61707865; m_state[1] = 0x3320646e;
m_state[2] = 0x79622d32; m_state[3] = 0x6b206574;
// Copy saved key into state
std::memcpy(m_state+4, m_state+KEY, 8*sizeof(word32));
// State words are defined in RFC 8439, Section 2.3
GetBlock<word32, LittleEndian> get(IV);
m_state[12] = m_counter;
get(m_state[13])(m_state[14])(m_state[15]);
}
void ChaChaTLS_Policy::SeekToIteration(lword iterationCount)
{
// Should we throw here??? If the initial block counter is
// large then we can wrap and process more data as long as
// data processed in the security context does not exceed
// 2^32 blocks or approximately 256 GB of data.
CRYPTOPP_ASSERT(iterationCount <= std::numeric_limits<word32>::max());
m_state[12] = (word32)iterationCount; // low word
}
unsigned int ChaChaTLS_Policy::GetAlignment() const
{
return ChaCha_GetAlignment();
}
unsigned int ChaChaTLS_Policy::GetOptimalBlockSize() const
{
return ChaCha_GetOptimalBlockSize();
}
void ChaChaTLS_Policy::OperateKeystream(KeystreamOperation operation,
byte *output, const byte *input, size_t iterationCount)
{
word32 discard=0;
ChaCha_OperateKeystream(operation, m_state, m_state[12], discard,
ROUNDS, output, input, iterationCount);
// If this fires it means ChaCha_OperateKeystream generated a counter
// block carry that was discarded. The problem is, the RFC does not
// specify what should happen when the counter block wraps. All we can
// do is inform the user that something bad may happen because we don't
// know what we should do.
// Also see https://github.com/weidai11/cryptopp/issues/790 and
// https://mailarchive.ietf.org/arch/msg/cfrg/gsOnTJzcbgG6OqD8Sc0GO5aR_tU
// CRYPTOPP_ASSERT(discard==0);
}
////////////////////////////// IETF XChaCha20 //////////////////////////////
std::string XChaCha20_Policy::AlgorithmName() const
{
return std::string("XChaCha20");
}
std::string XChaCha20_Policy::AlgorithmProvider() const
{
return ChaCha_AlgorithmProvider();
}
void XChaCha20_Policy::CipherSetKey(const NameValuePairs ¶ms, const byte *key, size_t length)
{
CRYPTOPP_ASSERT(key); CRYPTOPP_ASSERT(length == 32);
CRYPTOPP_UNUSED(length);
// Use previous rounds as the default value
int rounds = params.GetIntValueWithDefault(Name::Rounds(), m_rounds);
if (rounds != 20 && rounds != 12)
throw InvalidRounds(ChaCha::StaticAlgorithmName(), rounds);
// Latch a good value
m_rounds = rounds;
word64 block;
if (params.GetValue("InitialBlock", block))
m_counter = static_cast<word32>(block);
else
m_counter = 1;
// Stash key away for use in CipherResynchronize
GetBlock<word32, LittleEndian> get(key);
get(m_state[KEY+0])(m_state[KEY+1])(m_state[KEY+2])(m_state[KEY+3])
(m_state[KEY+4])(m_state[KEY+5])(m_state[KEY+6])(m_state[KEY+7]);
}
void XChaCha20_Policy::CipherResynchronize(byte *keystreamBuffer, const byte *iv, size_t length)
{
CRYPTOPP_UNUSED(keystreamBuffer), CRYPTOPP_UNUSED(length);
CRYPTOPP_ASSERT(length==24);
// HChaCha derivation
m_state[0] = 0x61707865; m_state[1] = 0x3320646e;
m_state[2] = 0x79622d32; m_state[3] = 0x6b206574;
// Copy saved key into state
std::memcpy(m_state+4, m_state+KEY, 8*sizeof(word32));
GetBlock<word32, LittleEndian> get(iv);
get(m_state[12])(m_state[13])(m_state[14])(m_state[15]);
// Operate the keystream without adding state back in.
// This function also gathers the key words into a
// contiguous 8-word block.
HChaCha_OperateKeystream(m_state, m_state+4);
// XChaCha state
m_state[0] = 0x61707865; m_state[1] = 0x3320646e;
m_state[2] = 0x79622d32; m_state[3] = 0x6b206574;
// Setup new IV
m_state[12] = m_counter;
m_state[13] = 0;
m_state[14] = GetWord<word32>(false, LITTLE_ENDIAN_ORDER, iv+16);
m_state[15] = GetWord<word32>(false, LITTLE_ENDIAN_ORDER, iv+20);
}
void XChaCha20_Policy::SeekToIteration(lword iterationCount)
{
// Should we throw here??? XChaCha does not have a block
// counter, so I'm not sure how to seek on it.
CRYPTOPP_ASSERT(0); CRYPTOPP_UNUSED(iterationCount);
}
unsigned int XChaCha20_Policy::GetAlignment() const
{
return ChaCha_GetAlignment();
}
unsigned int XChaCha20_Policy::GetOptimalBlockSize() const
{
return ChaCha_GetOptimalBlockSize();
}
void XChaCha20_Policy::OperateKeystream(KeystreamOperation operation,
byte *output, const byte *input, size_t iterationCount)
{
ChaCha_OperateKeystream(operation, m_state, m_state[12], m_state[13],
m_rounds, output, input, iterationCount);
}
NAMESPACE_END