Skip to content

Latest commit

 

History

History
50 lines (36 loc) · 1.28 KB

README.md

File metadata and controls

50 lines (36 loc) · 1.28 KB

Installation

  • (Optional) Create a virtual environment in PyCharm or CLI
  • Install from pip:
pip install protodf 

Features

  • Convert a Protobuf descriptor into a Spark schema:
from protodf import schema_for

schema = schema_for(message_type().DESCRIPTOR)
  • You can use the created schema to transform a Protobuf message from bytes into a Spark Row:

Create a function which your type:

from protodf import message_to_row

def specific_message_bytes_to_row(pb_bytes):
    # import your protobuf here
    msg = message_type.FromString(pb_bytes)
    row = message_to_row(message_type().DESCRIPTOR, msg)
    return row

Turn it into a UDF:

specific_message_bytes_to_row_udf = udf(specific_message_bytes_to_row, schema)

Use the UDF:

df = df.withColumn("event", specific_message_bytes_to_row_udf(col("value")))

Now you can query your Protobuf with regular SQL! Nested messages, repeated, etc are all supported!

df.select("event.field_name", "event.nested_message.field")

Explore the example

In main.py file you would see an example usage for the package