Skip to content
/ AMTL Public

Asymmetric Multi-Task Learning code, If you want to use it, please let me know and cite AMTL paper

Notifications You must be signed in to change notification settings

GWLee0524/AMTL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Asymmetric Multi-Task Learning(AMTL)

  • Giwoong Lee(UNIST), Eunho Yang(KAIST), Sung Ju Hwang(UNIST)

motivation mainIdea

Abstract

We propose a novel multi-task learning method that minimizes the effect of negative transfer by allowing asymmetric transfer between the tasks based on task relatedness as well as the amount of individual task losses, which we refer to as Asymmetric Multi-task Learning (AMTL). To tackle this problem, we couple multiple tasks via a sparse, directed regularization graph, that enforces each task parameter to be reconstructed as a sparse combination of other tasks selected based on the task-wise loss. We present two dif- ferent algorithms that jointly learn the task pre- dictors as well as the regularization graph. The first algorithm solves for the original learning objective using alternative optimization, and the second algorithm solves an approximation of it using curriculum learning strategy, that learns one task at a time. We perform experiments on multiple datasets for classification and regression, on which we obtain significant improvements in performance over the single task learning and existing multitask learning models.

Reference

If you use this code or dataset (such as imbalanced dataset) as part of any published research, please refer the following paper.

@inproceedings{lee2016asymmetric,
  title={Asymmetric Multi-task Learning based on Task Relatedness and Confidence},
  author={Lee, Giwoong and Yang, Eunho and others},
  booktitle={Proceedings of The 33rd International Conference on Machine Learning},
  pages={230--238},
  year={2016}
}

Running code

We have two types of code, regression(run_amtl_regression) and classification(run_amtl_class). I uploaded these codes with example dataset.

Details of AMTL

Details of AMTL are described in [AMTL paper][paperlink] [paperlink]: http://www.jmlr.org/proceedings/papers/v48/leeb16.pdf

About

Asymmetric Multi-Task Learning code, If you want to use it, please let me know and cite AMTL paper

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages