-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathtrain_cls.py
394 lines (343 loc) · 17.4 KB
/
train_cls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
from __future__ import absolute_import
import argparse
import collections
import json
import multiprocessing
import os
from datetime import datetime
import torch
from catalyst.dl import SupervisedRunner, EarlyStoppingCallback
from catalyst.utils import load_checkpoint, unpack_checkpoint
from pytorch_toolbelt.utils import fs
from pytorch_toolbelt.utils.random import set_manual_seed, get_random_name
from pytorch_toolbelt.utils.torch_utils import count_parameters, \
set_trainable
from retinopathy.callbacks import LPRegularizationCallback, \
CustomOptimizerCallback
from retinopathy.dataset import get_class_names, \
get_datasets, get_dataloaders
from retinopathy.factory import get_model, get_optimizer, \
get_optimizable_parameters, get_scheduler
from retinopathy.scripts.clean_checkpoint import clean_checkpoint
from retinopathy.train_utils import report_checkpoint, get_reg_callbacks, get_ord_callbacks, get_cls_callbacks
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=42, help='Random seed')
parser.add_argument('--fast', action='store_true')
parser.add_argument('--mixup', action='store_true')
parser.add_argument('--balance', action='store_true')
parser.add_argument('--balance-datasets', action='store_true')
parser.add_argument('--swa', action='store_true')
parser.add_argument('--show', action='store_true')
parser.add_argument('--use-idrid', action='store_true')
parser.add_argument('--use-messidor', action='store_true')
parser.add_argument('--use-aptos2015', action='store_true')
parser.add_argument('--use-aptos2019', action='store_true')
parser.add_argument('-v', '--verbose', action='store_true')
parser.add_argument('--coarse', action='store_true')
parser.add_argument('-acc', '--accumulation-steps', type=int, default=1, help='Number of batches to process')
parser.add_argument('-dd', '--data-dir', type=str, default='data', help='Data directory')
parser.add_argument('-m', '--model', type=str, default='resnet18_gap', help='')
parser.add_argument('-b', '--batch-size', type=int, default=8, help='Batch Size during training, e.g. -b 64')
parser.add_argument('-e', '--epochs', type=int, default=100, help='Epoch to run')
parser.add_argument('-es', '--early-stopping', type=int, default=None,
help='Maximum number of epochs without improvement')
parser.add_argument('-f', '--fold', action='append', type=int, default=None)
parser.add_argument('-ft', '--fine-tune', default=0, type=int)
parser.add_argument('-lr', '--learning-rate', type=float, default=1e-4, help='Initial learning rate')
parser.add_argument('--criterion-reg', type=str, default=None, nargs='+', help='Criterion')
parser.add_argument('--criterion-ord', type=str, default=None, nargs='+', help='Criterion')
parser.add_argument('--criterion-cls', type=str, default=['ce'], nargs='+', help='Criterion')
parser.add_argument('-l1', type=float, default=0, help='L1 regularization loss')
parser.add_argument('-l2', type=float, default=0, help='L2 regularization loss')
parser.add_argument('-o', '--optimizer', default='Adam', help='Name of the optimizer')
parser.add_argument('-p', '--preprocessing', default=None, help='Preprocessing method')
parser.add_argument('-c', '--checkpoint', type=str, default=None,
help='Checkpoint filename to use as initial model weights')
parser.add_argument('-w', '--workers', default=multiprocessing.cpu_count(), type=int, help='Num workers')
parser.add_argument('-a', '--augmentations', default='medium', type=str, help='')
parser.add_argument('-tta', '--tta', default=None, type=str, help='Type of TTA to use [fliplr, d4]')
parser.add_argument('-t', '--transfer', default=None, type=str, help='')
parser.add_argument('--fp16', action='store_true')
parser.add_argument('-s', '--scheduler', default='multistep', type=str, help='')
parser.add_argument('--size', default=512, type=int, help='Image size for training & inference')
parser.add_argument('-wd', '--weight-decay', default=0, type=float, help='L2 weight decay')
parser.add_argument('-wds', '--weight-decay-step', default=None, type=float,
help='L2 weight decay step to add after each epoch')
parser.add_argument('-d', '--dropout', default=0.0, type=float, help='Dropout before head layer')
parser.add_argument('--warmup', default=0, type=int,
help='Number of warmup epochs with 0.1 of the initial LR and frozed encoder')
parser.add_argument('-x', '--experiment', default=None, type=str, help='Dropout before head layer')
args = parser.parse_args()
data_dir = args.data_dir
num_workers = args.workers
num_epochs = args.epochs
batch_size = args.batch_size
learning_rate = args.learning_rate
l1 = args.l1
l2 = args.l2
early_stopping = args.early_stopping
model_name = args.model
optimizer_name = args.optimizer
image_size = (args.size, args.size)
fast = args.fast
augmentations = args.augmentations
fp16 = args.fp16
fine_tune = args.fine_tune
criterion_reg_name = args.criterion_reg
criterion_cls_name = args.criterion_cls
criterion_ord_name = args.criterion_ord
folds = args.fold
mixup = args.mixup
balance = args.balance
balance_datasets = args.balance_datasets
use_swa = args.swa
show_batches = args.show
scheduler_name = args.scheduler
verbose = args.verbose
weight_decay = args.weight_decay
use_idrid = args.use_idrid
use_messidor = args.use_messidor
use_aptos2015 = args.use_aptos2015
use_aptos2019 = args.use_aptos2019
warmup = args.warmup
dropout = args.dropout
use_unsupervised = False
experiment = args.experiment
preprocessing = args.preprocessing
weight_decay_step = args.weight_decay_step
coarse_grading = args.coarse
class_names = get_class_names(coarse_grading)
assert use_aptos2015 or use_aptos2019 or use_idrid or use_messidor
current_time = datetime.now().strftime('%b%d_%H_%M')
random_name = get_random_name()
if folds is None or len(folds) == 0:
folds = [None]
for fold in folds:
torch.cuda.empty_cache()
checkpoint_prefix = f'{model_name}_{args.size}_{augmentations}'
if preprocessing is not None:
checkpoint_prefix += f'_{preprocessing}'
if use_aptos2019:
checkpoint_prefix += '_aptos2019'
if use_aptos2015:
checkpoint_prefix += '_aptos2015'
if use_messidor:
checkpoint_prefix += '_messidor'
if use_idrid:
checkpoint_prefix += '_idrid'
if coarse_grading:
checkpoint_prefix += '_coarse'
if fold is not None:
checkpoint_prefix += f'_fold{fold}'
checkpoint_prefix += f'_{random_name}'
if experiment is not None:
checkpoint_prefix = experiment
directory_prefix = f'{current_time}/{checkpoint_prefix}'
log_dir = os.path.join('runs', directory_prefix)
os.makedirs(log_dir, exist_ok=False)
config_fname = os.path.join(log_dir, f'{checkpoint_prefix}.json')
with open(config_fname, 'w') as f:
train_session_args = vars(args)
f.write(json.dumps(train_session_args, indent=2))
set_manual_seed(args.seed)
num_classes = len(class_names)
model = get_model(model_name, num_classes=num_classes, dropout=dropout).cuda()
if args.transfer:
transfer_checkpoint = fs.auto_file(args.transfer)
print("Transfering weights from model checkpoint",
transfer_checkpoint)
checkpoint = load_checkpoint(transfer_checkpoint)
pretrained_dict = checkpoint['model_state_dict']
for name, value in pretrained_dict.items():
try:
model.load_state_dict(
collections.OrderedDict([(name, value)]), strict=False)
except Exception as e:
print(e)
report_checkpoint(checkpoint)
if args.checkpoint:
checkpoint = load_checkpoint(fs.auto_file(args.checkpoint))
unpack_checkpoint(checkpoint, model=model)
report_checkpoint(checkpoint)
train_ds, valid_ds, train_sizes = get_datasets(data_dir=data_dir,
use_aptos2019=use_aptos2019,
use_aptos2015=use_aptos2015,
use_idrid=use_idrid,
use_messidor=use_messidor,
use_unsupervised=False,
coarse_grading=coarse_grading,
image_size=image_size,
augmentation=augmentations,
preprocessing=preprocessing,
target_dtype=int,
fold=fold,
folds=4)
train_loader, valid_loader = get_dataloaders(train_ds, valid_ds,
batch_size=batch_size,
num_workers=num_workers,
train_sizes=train_sizes,
balance=balance,
balance_datasets=balance_datasets,
balance_unlabeled=False)
loaders = collections.OrderedDict()
loaders["train"] = train_loader
loaders["valid"] = valid_loader
print('Datasets :', data_dir)
print(' Train size :', len(train_loader), len(train_loader.dataset))
print(' Valid size :', len(valid_loader), len(valid_loader.dataset))
print(' Aptos 2019 :', use_aptos2019)
print(' Aptos 2015 :', use_aptos2015)
print(' IDRID :', use_idrid)
print(' Messidor :', use_messidor)
print('Train session :', directory_prefix)
print(' FP16 mode :', fp16)
print(' Fast mode :', fast)
print(' Mixup :', mixup)
print(' Balance cls. :', balance)
print(' Balance ds. :', balance_datasets)
print(' Warmup epoch :', warmup)
print(' Train epochs :', num_epochs)
print(' Fine-tune ephs :', fine_tune)
print(' Workers :', num_workers)
print(' Fold :', fold)
print(' Log dir :', log_dir)
print(' Augmentations :', augmentations)
print('Model :', model_name)
print(' Parameters :', count_parameters(model))
print(' Image size :', image_size)
print(' Dropout :', dropout)
print(' Classes :', class_names, num_classes)
print('Optimizer :', optimizer_name)
print(' Learning rate :', learning_rate)
print(' Batch size :', batch_size)
print(' Criterion (cls):', criterion_cls_name)
print(' Criterion (reg):', criterion_reg_name)
print(' Criterion (ord):', criterion_ord_name)
print(' Scheduler :', scheduler_name)
print(' Weight decay :', weight_decay, weight_decay_step)
print(' L1 reg. :', l1)
print(' L2 reg. :', l2)
print(' Early stopping :', early_stopping)
# model training
callbacks = []
criterions = {}
main_metric = 'cls/kappa'
if criterion_reg_name is not None:
cb, crits = get_reg_callbacks(criterion_reg_name, class_names=class_names, show=show_batches)
callbacks += cb
criterions.update(crits)
if criterion_ord_name is not None:
cb, crits = get_ord_callbacks(criterion_ord_name, class_names=class_names, show=show_batches)
callbacks += cb
criterions.update(crits)
if criterion_cls_name is not None:
cb, crits = get_cls_callbacks(criterion_cls_name,
num_classes=num_classes,
num_epochs=num_epochs, class_names=class_names, show=show_batches)
callbacks += cb
criterions.update(crits)
if l1 > 0:
callbacks += [LPRegularizationCallback(start_wd=l1, end_wd=l1, schedule=None, prefix='l1', p=1)]
if l2 > 0:
callbacks += [LPRegularizationCallback(start_wd=l2, end_wd=l2, schedule=None, prefix='l2', p=2)]
callbacks += [
CustomOptimizerCallback()
]
runner = SupervisedRunner(input_key='image')
# Pretrain/warmup
if warmup:
set_trainable(model.encoder, False, False)
optimizer = get_optimizer('Adam', get_optimizable_parameters(model),
learning_rate=learning_rate * 0.1)
runner.train(
fp16=fp16,
model=model,
criterion=criterions,
optimizer=optimizer,
scheduler=None,
callbacks=callbacks,
loaders=loaders,
logdir=os.path.join(log_dir, 'warmup'),
num_epochs=warmup,
verbose=verbose,
main_metric=main_metric,
minimize_metric=False,
checkpoint_data={"cmd_args": vars(args)}
)
del optimizer
# Main train
if num_epochs:
set_trainable(model.encoder, True, False)
optimizer = get_optimizer(optimizer_name, get_optimizable_parameters(model),
learning_rate=learning_rate,
weight_decay=weight_decay)
if use_swa:
from torchcontrib.optim import SWA
optimizer = SWA(optimizer,
swa_start=len(train_loader),
swa_freq=512)
scheduler = get_scheduler(scheduler_name, optimizer,
lr=learning_rate,
num_epochs=num_epochs,
batches_in_epoch=len(train_loader))
# Additional callbacks that specific to main stage only added here to copy of callbacks
main_stage_callbacks = callbacks
if early_stopping:
es_callback = EarlyStoppingCallback(early_stopping,
min_delta=1e-4,
metric=main_metric, minimize=False)
main_stage_callbacks = callbacks + [es_callback]
runner.train(
fp16=fp16,
model=model,
criterion=criterions,
optimizer=optimizer,
scheduler=scheduler,
callbacks=main_stage_callbacks,
loaders=loaders,
logdir=os.path.join(log_dir, 'main'),
num_epochs=num_epochs,
verbose=verbose,
main_metric=main_metric,
minimize_metric=False,
checkpoint_data={"cmd_args": vars(args)}
)
del optimizer, scheduler
best_checkpoint = os.path.join(log_dir, 'main', 'checkpoints', 'best.pth')
model_checkpoint = os.path.join(log_dir, 'main', 'checkpoints', f'{checkpoint_prefix}.pth')
clean_checkpoint(best_checkpoint, model_checkpoint)
# Restoring best model from checkpoint
checkpoint = load_checkpoint(best_checkpoint)
unpack_checkpoint(checkpoint, model=model)
report_checkpoint(checkpoint)
# Stage 3 - Fine tuning
if fine_tune:
set_trainable(model.encoder, False, False)
optimizer = get_optimizer(optimizer_name, get_optimizable_parameters(model),
learning_rate=learning_rate)
scheduler = get_scheduler('multistep', optimizer,
lr=learning_rate,
num_epochs=fine_tune,
batches_in_epoch=len(train_loader))
runner.train(
fp16=fp16,
model=model,
criterion=criterions,
optimizer=optimizer,
scheduler=scheduler,
callbacks=callbacks,
loaders=loaders,
logdir=os.path.join(log_dir, 'finetune'),
num_epochs=fine_tune,
verbose=verbose,
main_metric=main_metric,
minimize_metric=False,
checkpoint_data={"cmd_args": vars(args)}
)
best_checkpoint = os.path.join(log_dir, 'finetune', 'checkpoints', 'best.pth')
model_checkpoint = os.path.join(log_dir, 'finetune', 'checkpoints', f'{checkpoint_prefix}.pth')
clean_checkpoint(best_checkpoint, model_checkpoint)
if __name__ == '__main__':
with torch.autograd.detect_anomaly():
main()