-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain_ds.py
78 lines (63 loc) · 3.94 KB
/
main_ds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import argparse
import multiprocessing as mp
import sys
from pathlib import Path
from algorithm.config_helper import set_logger
# for correctly import protoc
sys.path.append(str(Path(__file__).resolve().parent.joinpath('ds/proto')))
if __name__ == '__main__':
mp.set_start_method('spawn')
parser = argparse.ArgumentParser()
parser.add_argument('env')
parser.add_argument('process_type', choices=['learner', 'l',
'actor', 'a'])
parser.add_argument('--hit', type=int, default=None, nargs='?', const=1)
# TODO: OC
# parser.add_argument('--oc', action='store_true', default=False)
parser.add_argument('--config', '-c', help='Config file')
parser.add_argument('--override', '-o', default=[], nargs='+', help='Override config')
parser.add_argument('--run', action='store_true', help='Inference mode for all agents, ignore run_a')
parser.add_argument('--run_a', action='append', default=[], help='Inference mode for specific agents')
parser.add_argument('--copy_model', default=None, help='Copy existed model directory to current model directory')
parser.add_argument('--logger_in_file', action='store_true', help='Logging into a file')
parser.add_argument('--learner_host', help='Learner host')
parser.add_argument('--learner_port', type=int, help='Learner port')
parser.add_argument('--render', action='store_true', help='Render')
parser.add_argument('--env_args', default=[], nargs='+', help='Additional arguments for environments \
Eqvilent to --override base_config.env_args')
parser.add_argument('--envs', type=int, help='Number of env copies. Eqvilent to --override base_config.n_envs')
parser.add_argument('--max_iter', type=int, help='Maximum iteration. Eqvilent to --override base_config.max_iter')
parser.add_argument('--u_port', '-p', type=int, default=5005, help='UNITY: communication port')
parser.add_argument('--u_editor', action='store_true', help='UNITY: running in Unity Editor')
parser.add_argument('--u_quality_level', type=int, default=2, help='UNITY: Quality level. \
0: URP-Performant-Renderer, \
1: URP-Balanced-Renderer, \
2: URP-HighFidelity-Renderer')
parser.add_argument('--u_timescale', type=float, default=None, help='UNITY: timescale')
parser.add_argument('--name', '-n', help='Training name. Eqvilent to --override base_config.name')
parser.add_argument('--disable_sample', action='store_true', help='Disable sampling when choosing actions')
parser.add_argument('--use_env_nn', action='store_true', help='Always use nn.py in env, or use saved nn_models.py if existed')
parser.add_argument('--device', help='CPU or GPU')
parser.add_argument('--ckpt', help='Ckeckpoint to restore')
parser.add_argument('--nn', help='Neural network model. Eqvilent to --override sac_config.nn')
parser.add_argument('--debug', action='store_true')
args = parser.parse_args()
set_logger(debug=args.debug)
root_dir = Path(__file__).resolve().parent
config_dir = f'envs/{args.env}'
if args.process_type in ['learner', 'l']:
if args.hit is not None:
import algorithm.sac_main_hit
algorithm.sac_main_hit.HIT_REWARD = args.hit
from ds.main_hit import LearnerHit as Learner
else:
from ds.learner import Learner
Learner(root_dir, config_dir, args)
elif args.process_type in ['actor', 'a']:
if args.hit is not None:
import algorithm.sac_main_hit
algorithm.sac_main_hit.HIT_REWARD = args.hit
from ds.main_hit import ActorHit as Actor
else:
from ds.actor import Actor
Actor(root_dir, config_dir, args)