forked from vshymanskyy/micropython
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mpthreadport.c
308 lines (260 loc) · 10.7 KB
/
mpthreadport.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Damien P. George on behalf of Pycom Ltd
* Copyright (c) 2017 Pycom Limited
* Copyright (c) 2024 Daniel Campora on behalf of REMOTE TECH LTD
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include "py/runtime.h"
#include "py/gc.h"
#include "py/mpthread.h"
#include "py/mphal.h"
#if MICROPY_PY_THREAD
#define DEBUG_printf(...) // printk("_thread: " __VA_ARGS__)
#define MP_THREAD_MIN_STACK_SIZE (4 * 1024)
#define MP_THREAD_DEFAULT_STACK_SIZE (MP_THREAD_MIN_STACK_SIZE + 1024)
#define MP_THREAD_PRIORITY (k_thread_priority_get(k_current_get())) // same priority as the main thread
#define MP_THREAD_MAXIMUM_USER_THREADS (4)
typedef enum {
MP_THREAD_STATUS_CREATED = 0,
MP_THREAD_STATUS_READY,
MP_THREAD_STATUS_FINISHED,
} mp_thread_status_t;
typedef struct _mp_thread_slot_t {
bool used;
} mp_thread_stack_slot_t;
// this structure forms a linked list, one node per active thread
typedef struct _mp_thread_t {
k_tid_t id; // system id of thread (this is actually a pointer to z_thread below)
struct k_thread z_thread; // the zephyr thread object
mp_thread_status_t status; // whether the thread is created, ready, or finished
int16_t alive; // whether the thread is still visible by the kernel
int16_t slot; // slot index in the stack pool
void *arg; // thread Python args, a GC root pointer
void *stack; // pointer to the stack
size_t stack_len; // number of words in the stack
struct _mp_thread_t *next;
} mp_thread_t;
// the mutex controls access to the linked list
static mp_thread_mutex_t thread_mutex;
static mp_thread_t thread_entry0;
static mp_thread_t *thread = NULL; // root pointer, handled by mp_thread_gc_others
static uint8_t mp_thread_counter;
static mp_thread_stack_slot_t stack_slot[MP_THREAD_MAXIMUM_USER_THREADS];
K_THREAD_STACK_ARRAY_DEFINE(mp_thread_stack_array, MP_THREAD_MAXIMUM_USER_THREADS, MP_THREAD_DEFAULT_STACK_SIZE);
static void mp_thread_iterate_threads_cb(const struct k_thread *thread, void *user_data);
static int32_t mp_thread_find_stack_slot(void);
void mp_thread_init(void *stack, uint32_t stack_len) {
mp_thread_set_state(&mp_state_ctx.thread);
// create the first entry in the linked list of all threads
thread_entry0.id = k_current_get();
thread_entry0.status = MP_THREAD_STATUS_READY;
thread_entry0.alive = 1;
thread_entry0.arg = NULL;
thread_entry0.stack = stack;
thread_entry0.stack_len = stack_len;
thread_entry0.next = NULL;
k_thread_name_set(thread_entry0.id, "mp_main");
mp_thread_counter = 0;
mp_thread_mutex_init(&thread_mutex);
// memory barrier to ensure above data is committed
__sync_synchronize();
thread = &thread_entry0;
}
void mp_thread_gc_others(void) {
mp_thread_t *prev = NULL;
if (thread == NULL) {
// threading not yet initialised
return;
}
mp_thread_mutex_lock(&thread_mutex, 1);
// get the kernel to iterate over all the existing threads
DEBUG_printf("Iterating...\n");
k_thread_foreach(mp_thread_iterate_threads_cb, NULL);
for (mp_thread_t *th = thread; th != NULL; th = th->next) {
// unlink non-alive thread nodes from the list
if ((th->status == MP_THREAD_STATUS_FINISHED) && !th->alive) {
if (prev != NULL) {
prev->next = th->next;
} else {
// move the start pointer
thread = th->next;
}
stack_slot[th->slot].used = false;
mp_thread_counter--;
DEBUG_printf("Collecting thread %s\n", k_thread_name_get(th->id));
// The "th" memory will eventually be reclaimed by the GC
} else {
th->alive = 0;
prev = th;
}
}
DEBUG_printf("mp_thread_gc_others from %s\n", k_thread_name_get(k_current_get()));
for (mp_thread_t *th = thread; th != NULL; th = th->next) {
DEBUG_printf("%s\n", k_thread_name_get(th->id));
gc_collect_root((void **)&th, 1);
gc_collect_root(&th->arg, 1);
// gc_collect_root(&th->stack, 1); // will be needed later when the stack is allocated from the gc heap
if (th->id == k_current_get()) {
continue;
}
if (th->status != MP_THREAD_STATUS_READY) {
continue;
}
gc_collect_root(th->stack, th->stack_len);
}
mp_thread_mutex_unlock(&thread_mutex);
}
mp_state_thread_t *mp_thread_get_state(void) {
return (mp_state_thread_t *)k_thread_custom_data_get();
}
void mp_thread_set_state(mp_state_thread_t *state) {
k_thread_custom_data_set((void *)state);
}
mp_uint_t mp_thread_get_id(void) {
return (mp_uint_t)k_current_get();
}
void mp_thread_start(void) {
mp_thread_mutex_lock(&thread_mutex, 1);
for (mp_thread_t *th = thread; th != NULL; th = th->next) {
if (th->id == k_current_get()) {
th->status = MP_THREAD_STATUS_READY;
break;
}
}
mp_thread_mutex_unlock(&thread_mutex);
}
static void zephyr_entry(void *arg1, void *arg2, void *arg3) {
(void)arg3;
// arg1 contains the python thread entry point
if (arg1) {
void *(*entry)(void *) = arg1;
entry(arg2);
}
k_thread_abort(k_current_get());
for (;;) {;
}
}
mp_uint_t mp_thread_create_ex(void *(*entry)(void *), void *arg, size_t *stack_size, int priority, char *name) {
// TODO: we need to support for CONFIG_DYNAMIC_THREAD in order to dynamically create allocate the stack of a thread
// if (*stack_size == 0) {
// *stack_size = MP_THREAD_DEFAULT_STACK_SIZE; // default stack size
// } else if (*stack_size < MP_THREAD_MIN_STACK_SIZE) {
// *stack_size = MP_THREAD_MIN_STACK_SIZE; // minimum stack size
// }
// in case some threads have finished but their stack has not been collected yet
gc_collect();
// Allocate linked-list node (must be outside thread_mutex lock)
mp_thread_t *th = m_new_obj(mp_thread_t);
mp_thread_mutex_lock(&thread_mutex, 1);
int32_t _slot = mp_thread_find_stack_slot();
if (_slot >= 0) {
// create thread
th->id = k_thread_create(&th->z_thread, mp_thread_stack_array[_slot], K_THREAD_STACK_SIZEOF(mp_thread_stack_array[_slot]),
zephyr_entry, entry, arg, NULL, priority, 0, K_NO_WAIT);
if (th->id == NULL) {
mp_thread_mutex_unlock(&thread_mutex);
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("can't create thread"));
}
k_thread_name_set(th->id, (const char *)name);
} else {
mp_thread_mutex_unlock(&thread_mutex);
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("maximum number of threads reached"));
}
// add thread to linked list of all threads
th->status = MP_THREAD_STATUS_CREATED;
th->alive = 0;
th->slot = _slot;
th->arg = arg;
th->stack = (void *)th->z_thread.stack_info.start;
th->stack_len = th->z_thread.stack_info.size / sizeof(uintptr_t);
th->next = thread;
thread = th;
stack_slot[_slot].used = true;
mp_thread_counter++;
// adjust the stack_size to provide room to recover from hitting the limit
*stack_size = th->z_thread.stack_info.size - 1024;
mp_thread_mutex_unlock(&thread_mutex);
return (mp_uint_t)th->id;
}
mp_uint_t mp_thread_create(void *(*entry)(void *), void *arg, size_t *stack_size) {
char _name[16];
snprintf(_name, sizeof(_name), "mp_thread_%d", mp_thread_counter);
return mp_thread_create_ex(entry, arg, stack_size, MP_THREAD_PRIORITY, _name);
}
void mp_thread_finish(void) {
mp_thread_mutex_lock(&thread_mutex, 1);
for (mp_thread_t *th = thread; th != NULL; th = th->next) {
if (th->id == k_current_get()) {
th->status = MP_THREAD_STATUS_FINISHED;
DEBUG_printf("Finishing thread %s\n", k_thread_name_get(th->id));
break;
}
}
mp_thread_mutex_unlock(&thread_mutex);
}
void mp_thread_mutex_init(mp_thread_mutex_t *mutex) {
// Need a binary semaphore so a lock can be acquired on one Python thread
// and then released on another.
k_sem_init(&mutex->handle, 0, 1);
k_sem_give(&mutex->handle);
}
int mp_thread_mutex_lock(mp_thread_mutex_t *mutex, int wait) {
return k_sem_take(&mutex->handle, wait ? K_FOREVER : K_NO_WAIT) == 0;
}
void mp_thread_mutex_unlock(mp_thread_mutex_t *mutex) {
k_sem_give(&mutex->handle);
k_yield();
}
void mp_thread_deinit(void) {
// abort all threads except for the main thread
mp_thread_mutex_lock(&thread_mutex, 1);
for (mp_thread_t *th = thread; th != NULL; th = th->next) {
// don't delete the current task
if ((th->id != k_current_get()) && (th->status != MP_THREAD_STATUS_FINISHED)) {
th->status = MP_THREAD_STATUS_FINISHED;
DEBUG_printf("De-initializing thread %s\n", k_thread_name_get(th->id));
k_thread_abort(th->id);
}
}
mp_thread_mutex_unlock(&thread_mutex);
}
static void mp_thread_iterate_threads_cb(const struct k_thread *z_thread, void *user_data) {
for (mp_thread_t *th = thread; th != NULL; th = th->next) {
if (th->id == (struct k_thread *)z_thread) {
th->alive = 1;
DEBUG_printf("Found thread %s\n", k_thread_name_get(th->id));
}
}
}
static int32_t mp_thread_find_stack_slot(void) {
for (int i = 0; i < MP_THREAD_MAXIMUM_USER_THREADS; i++) {
if (!stack_slot[i].used) {
DEBUG_printf("Allocating stack slot %d\n", i);
return i;
}
}
return -1;
}
#endif // MICROPY_PY_THREAD