-
Notifications
You must be signed in to change notification settings - Fork 5
/
BioAutoML-feature.py
436 lines (354 loc) · 15.5 KB
/
BioAutoML-feature.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
import warnings
warnings.filterwarnings(action='ignore', category=FutureWarning)
warnings.filterwarnings('ignore')
import pandas as pd
import argparse
import subprocess
import shutil
import sys
import os.path
import time
import lightgbm as lgb
from catboost import CatBoostClassifier
from sklearn.metrics import balanced_accuracy_score
# from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import make_scorer
from sklearn.model_selection import cross_val_score
from sklearn.metrics import f1_score
from hyperopt import hp, fmin, tpe, STATUS_OK, Trials
# Testing
# python BioAutoML-feature.py
# -fasta_train Case\ Studies/CS-II/train/miRNA.fasta
# Case\ Studies/CS-II/train/pre_miRNA.fasta
# Case\ Studies/CS-II/train/tRNA.fasta
# -fasta_label_train miRNA pre_miRNA tRNA
# -fasta_test Case\ Studies/CS-II/test/miRNA.fasta
# Case\ Studies/CS-II/test/pre_miRNA.fasta
# Case\ Studies/CS-II/test/tRNA.fasta
# -fasta_label_test miRNA pre_miRNA tRNA
# -output results/
def objective_rf(space):
"""Automated Feature Engineering - Objective Function - Bayesian Optimization"""
index = list()
descriptors = {'NAC': list(range(0, 4)), 'DNC': list(range(4, 20)),
'TNC': list(range(20, 84)), 'kGap_di': list(range(84, 148)),
'kGap_tri': list(range(148, 404)), 'ORF': list(range(404, 414)),
'Fickett': list(range(414, 416)), 'Shannon': list(range(416, 421)),
'FourierBinary': list(range(421, 440)), 'FourierComplex': list(range(440, 459)),
'Tsallis': list(range(459, 464))}
for descriptor, ind in descriptors.items():
if int(space[descriptor]) == 1:
index = index + ind
x = df_x.iloc[:, index]
# print(index)
if int(space['Classifier']) == 0:
if len(fasta_label_train) > 2:
model = AdaBoostClassifier(random_state=63)
else:
model = CatBoostClassifier(n_estimators=500,
thread_count=n_cpu, nan_mode='Max',
logging_level='Silent', random_state=63)
elif int(space['Classifier']) == 1:
model = RandomForestClassifier(n_estimators=500, n_jobs=n_cpu, random_state=63)
else:
model = lgb.LGBMClassifier(n_estimators=500, n_jobs=n_cpu, random_state=63)
# print(model)
if len(fasta_label_train) > 2:
score = make_scorer(f1_score, average='weighted')
else:
score = make_scorer(balanced_accuracy_score)
kfold = StratifiedKFold(n_splits=10, shuffle=True)
metric = cross_val_score(model,
x,
labels_y,
cv=kfold,
scoring=score,
n_jobs=n_cpu).mean()
return {'loss': -metric, 'status': STATUS_OK}
def feature_engineering(estimations, train, train_labels, test, foutput):
"""Automated Feature Engineering - Bayesian Optimization"""
global df_x, labels_y
print('Automated Feature Engineering - Bayesian Optimization')
df_x = pd.read_csv(train)
labels_y = pd.read_csv(train_labels)
if test != '':
df_test = pd.read_csv(test)
path_bio = foutput + '/best_descriptors'
if not os.path.exists(path_bio):
os.mkdir(path_bio)
param = {'NAC': [0, 1], 'DNC': [0, 1],
'TNC': [0, 1], 'kGap_di': [0, 1], 'kGap_tri': [0, 1],
'ORF': [0, 1], 'Fickett': [0, 1],
'Shannon': [0, 1], 'FourierBinary': [0, 1],
'FourierComplex': [0, 1], 'Tsallis': [0, 1],
'Classifier': [0, 1, 2]}
space = {'NAC': hp.choice('NAC', [0, 1]),
'DNC': hp.choice('DNC', [0, 1]),
'TNC': hp.choice('TNC', [0, 1]),
'kGap_di': hp.choice('kGap_di', [0, 1]),
'kGap_tri': hp.choice('kGap_tri', [0, 1]),
'ORF': hp.choice('ORF', [0, 1]),
'Fickett': hp.choice('Fickett', [0, 1]),
'Shannon': hp.choice('Shannon', [0, 1]),
'FourierBinary': hp.choice('FourierBinary', [0, 1]),
'FourierComplex': hp.choice('FourierComplex', [0, 1]),
'Tsallis': hp.choice('Tsallis', [0, 1]),
'Classifier': hp.choice('Classifier', [0, 1, 2])}
trials = Trials()
best_tuning = fmin(fn=objective_rf,
space=space,
algo=tpe.suggest,
max_evals=estimations,
trials=trials)
index = list()
descriptors = {'NAC': list(range(0, 4)), 'DNC': list(range(4, 20)),
'TNC': list(range(20, 84)), 'kGap_di': list(range(84, 148)),
'kGap_tri': list(range(148, 404)), 'ORF': list(range(404, 414)),
'Fickett': list(range(414, 416)), 'Shannon': list(range(416, 421)),
'FourierBinary': list(range(421, 440)), 'FourierComplex': list(range(440, 459)),
'Tsallis': list(range(459, 464))}
for descriptor, ind in descriptors.items():
result = param[descriptor][best_tuning[descriptor]]
if result == 1:
index = index + ind
classifier = param['Classifier'][best_tuning['Classifier']]
btrain = df_x.iloc[:, index]
path_btrain = path_bio + '/best_train.csv'
btrain.to_csv(path_btrain, index=False, header=True)
if test != '':
btest = df_test.iloc[:, index]
path_btest = path_bio + '/best_test.csv'
btest.to_csv(path_btest, index=False, header=True)
else:
btest, path_btest = '', ''
return classifier, path_btrain, path_btest, btrain, btest
def feature_extraction(ftrain, ftrain_labels, ftest, ftest_labels, features, foutput):
"""Extracts the features from the sequences in the fasta files."""
path = foutput + '/feat_extraction'
path_results = foutput
try:
shutil.rmtree(path)
shutil.rmtree(path_results)
except OSError as e:
print("Error: %s - %s." % (e.filename, e.strerror))
print('Creating Directory...')
if not os.path.exists(path_results):
os.mkdir(path_results)
if not os.path.exists(path):
os.mkdir(path)
os.mkdir(path + '/train')
os.mkdir(path + '/test')
labels = [ftrain_labels]
fasta = [ftrain]
train_size = 0
if fasta_test:
labels.append(ftest_labels)
fasta.append(ftest)
datasets = []
fasta_list = []
print('Extracting features with MathFeature...')
for i in range(len(labels)):
for j in range(len(labels[i])):
file = fasta[i][j].split('/')[-1]
if i == 0: # Train
preprocessed_fasta = path + '/train/pre_' + file
subprocess.run(['python', 'MathFeature/preprocessing/preprocessing.py',
'-i', fasta[i][j], '-o', preprocessed_fasta],
stdout=subprocess.DEVNULL, stderr=subprocess.STDOUT)
train_size += len([1 for line in open(preprocessed_fasta) if line.startswith(">")])
else: # Test
preprocessed_fasta = path + '/test/pre_' + file
subprocess.run(['python', 'MathFeature/preprocessing/preprocessing.py',
'-i', fasta[i][j], '-o', preprocessed_fasta],
stdout=subprocess.DEVNULL, stderr=subprocess.STDOUT)
fasta_list.append(preprocessed_fasta)
if 1 in features:
dataset = path + '/NAC.csv'
subprocess.run(['python', 'MathFeature/methods/ExtractionTechniques.py',
'-i', preprocessed_fasta, '-o', dataset, '-l', labels[i][j],
'-t', 'NAC', '-seq', '1'], stdout=subprocess.DEVNULL, stderr=subprocess.STDOUT)
datasets.append(dataset)
if 2 in features:
dataset = path + '/DNC.csv'
subprocess.run(['python', 'MathFeature/methods/ExtractionTechniques.py', '-i',
preprocessed_fasta, '-o', dataset, '-l', labels[i][j],
'-t', 'DNC', '-seq', '1'], stdout=subprocess.DEVNULL,
stderr=subprocess.STDOUT)
datasets.append(dataset)
if 3 in features:
dataset = path + '/TNC.csv'
subprocess.run(['python', 'MathFeature/methods/ExtractionTechniques.py', '-i',
preprocessed_fasta, '-o', dataset, '-l', labels[i][j],
'-t', 'TNC', '-seq', '1'], stdout=subprocess.DEVNULL,
stderr=subprocess.STDOUT)
datasets.append(dataset)
if 4 in features:
dataset_di = path + '/kGap_di.csv'
dataset_tri = path + '/kGap_tri.csv'
subprocess.run(['python', 'MathFeature/methods/Kgap.py', '-i',
preprocessed_fasta, '-o', dataset_di, '-l',
labels[i][j], '-k', '1', '-bef', '1',
'-aft', '2', '-seq', '1'],
stdout=subprocess.DEVNULL, stderr=subprocess.STDOUT)
subprocess.run(['python', 'MathFeature/methods/Kgap.py', '-i',
preprocessed_fasta, '-o', dataset_tri, '-l',
labels[i][j], '-k', '1', '-bef', '1',
'-aft', '3', '-seq', '1'],
stdout=subprocess.DEVNULL, stderr=subprocess.STDOUT)
datasets.append(dataset_di)
datasets.append(dataset_tri)
if 5 in features:
dataset = path + '/ORF.csv'
subprocess.run(['python', 'MathFeature/methods/CodingClass.py', '-i',
preprocessed_fasta, '-o', dataset, '-l', labels[i][j]],
stdout=subprocess.DEVNULL, stderr=subprocess.STDOUT)
datasets.append(dataset)
if 6 in features:
dataset = path + '/Fickett.csv'
subprocess.run(['python', 'MathFeature/methods/FickettScore.py', '-i',
preprocessed_fasta, '-o', dataset, '-l', labels[i][j],
'-seq', '1'], stdout=subprocess.DEVNULL, stderr=subprocess.STDOUT)
datasets.append(dataset)
if 7 in features:
dataset = path + '/Shannon.csv'
subprocess.run(['python', 'MathFeature/methods/EntropyClass.py', '-i',
preprocessed_fasta, '-o', dataset, '-l', labels[i][j],
'-k', '5', '-e', 'Shannon'],
stdout=subprocess.DEVNULL, stderr=subprocess.STDOUT)
datasets.append(dataset)
if 8 in features:
dataset = path + '/FourierBinary.csv'
subprocess.run(['python', 'MathFeature/methods/FourierClass.py', '-i',
preprocessed_fasta, '-o', dataset, '-l', labels[i][j],
'-r', '1'], stdout=subprocess.DEVNULL, stderr=subprocess.STDOUT)
datasets.append(dataset)
if 9 in features:
dataset = path + '/FourierComplex.csv'
subprocess.run(['python', 'other-methods/FourierClass.py', '-i',
preprocessed_fasta, '-o', dataset, '-l', labels[i][j],
'-r', '6'], stdout=subprocess.DEVNULL, stderr=subprocess.STDOUT)
datasets.append(dataset)
if 10 in features:
dataset = path + '/Tsallis.csv'
subprocess.run(['python', 'other-methods/TsallisEntropy.py', '-i',
preprocessed_fasta, '-o', dataset, '-l', labels[i][j],
'-k', '5', '-q', '2.3'], stdout=subprocess.DEVNULL, stderr=subprocess.STDOUT)
datasets.append(dataset)
if 11 in features:
dataset = path + '/Chaos.csv'
# classifical_chaos(preprocessed_fasta, labels[i][j], 'Yes', dataset)
datasets.append(dataset)
if 12 in features:
dataset = path + '/BinaryMapping.csv'
labels_list = ftrain_labels + ftest_labels
text_input = ''
for i in range(len(fasta_list)):
text_input += fasta_list[i] + '\n' + labels_list[i] + '\n'
subprocess.run(['python', 'MathFeature/methods/MappingClass.py',
'-n', str(len(fasta_list)), '-o',
dataset, '-r', '1'], text=True, input=text_input,
stdout=subprocess.DEVNULL, stderr=subprocess.STDOUT)
with open(dataset, 'r') as temp_f:
col_count = [len(l.split(",")) for l in temp_f.readlines()]
colnames = ['BinaryMapping_' + str(i) for i in range(0, max(col_count))]
df = pd.read_csv(dataset, names=colnames, header=None)
df.rename(columns={df.columns[0]: 'nameseq', df.columns[-1]: 'label'}, inplace=True)
df.to_csv(dataset, index=False)
datasets.append(dataset)
"""Concatenating all the extracted features"""
if datasets:
datasets = list(dict.fromkeys(datasets))
dataframes = pd.concat([pd.read_csv(f) for f in datasets], axis=1)
dataframes = dataframes.loc[:, ~dataframes.columns.duplicated()]
dataframes = dataframes[~dataframes.nameseq.str.contains("nameseq")]
X_train = dataframes.iloc[:train_size, :]
X_train.pop('nameseq')
y_train = X_train.pop('label')
ftrain = path + '/ftrain.csv'
X_train.to_csv(ftrain, index=False)
flabeltrain = path + '/flabeltrain.csv'
y_train.to_csv(flabeltrain, index=False, header=True)
fnameseqtest, ftest, flabeltest = '', '', ''
if fasta_test:
X_test = dataframes.iloc[train_size:, :]
y_test = X_test.pop('label')
nameseq_test = X_test.pop('nameseq')
fnameseqtest = path + '/fnameseqtest.csv'
nameseq_test.to_csv(fnameseqtest, index=False, header=True)
ftest = path + '/ftest.csv'
X_test.to_csv(ftest, index=False)
flabeltest = path + '/flabeltest.csv'
y_test.to_csv(flabeltest, index=False, header=True)
return fnameseqtest, ftrain, flabeltrain, ftest, flabeltest
##########################################################################
##########################################################################
if __name__ == '__main__':
print('\n')
print('###################################################################################')
print('###################################################################################')
print('########## BioAutoML- Automated Feature Engineering ###########')
print('########## Author: Robson Parmezan Bonidia ###########')
print('########## WebPage: https://bonidia.github.io/website/ ###########')
print('###################################################################################')
print('###################################################################################')
print('\n')
parser = argparse.ArgumentParser()
parser.add_argument('-fasta_train', '--fasta_train', nargs='+',
help='fasta format file, e.g., fasta/ncRNA.fasta'
'fasta/lncRNA.fasta fasta/circRNA.fasta')
parser.add_argument('-fasta_label_train', '--fasta_label_train', nargs='+',
help='labels for fasta files, e.g., ncRNA lncRNA circRNA')
parser.add_argument('-fasta_test', '--fasta_test', nargs='+',
help='fasta format file, e.g., fasta/ncRNA fasta/lncRNA fasta/circRNA')
parser.add_argument('-fasta_label_test', '--fasta_label_test', nargs='+',
help='labels for fasta files, e.g., ncRNA lncRNA circRNA')
parser.add_argument('-estimations', '--estimations', default=50, help='number of estimations - BioAutoML - default = 50')
parser.add_argument('-n_cpu', '--n_cpu', default=1, help='number of cpus - default = 1')
parser.add_argument('-output', '--output', help='results directory, e.g., result/')
args = parser.parse_args()
fasta_train = args.fasta_train
fasta_label_train = args.fasta_label_train
fasta_test = args.fasta_test
fasta_label_test = args.fasta_label_test
estimations = int(args.estimations)
n_cpu = int(args.n_cpu)
foutput = str(args.output)
for fasta in fasta_train:
if os.path.exists(fasta) is True:
print('Train - %s: Found File' % fasta)
else:
print('Train - %s: File not exists' % fasta)
sys.exit()
if fasta_test:
for fasta in fasta_test:
if os.path.exists(fasta) is True:
print('Test - %s: Found File' % fasta)
else:
print('Test - %s: File not exists' % fasta)
sys.exit()
start_time = time.time()
features = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
fnameseqtest, ftrain, ftrain_labels, \
ftest, ftest_labels = feature_extraction(fasta_train, fasta_label_train,
fasta_test, fasta_label_test, features, foutput)
classifier, path_train, path_test, train_best, test_best = \
feature_engineering(estimations, ftrain, ftrain_labels, ftest, foutput)
cost = (time.time() - start_time) / 60
print('Computation time - Pipeline - Automated Feature Engineering: %s minutes' % cost)
if len(fasta_label_train) > 2:
subprocess.run(['python', 'BioAutoML-multiclass.py', '-train', path_train,
'-train_label', ftrain_labels, '-test', path_test,
'-test_label', ftest_labels, '-test_nameseq',
fnameseqtest, '-nf', 'True', '-classifier', str(classifier),
'-n_cpu', str(n_cpu), '-output', foutput])
else:
subprocess.run(['python', 'BioAutoML-binary.py', '-train', path_train,
'-train_label', ftrain_labels, '-test', path_test, '-test_label',
ftest_labels, '-test_nameseq', fnameseqtest,
'-nf', 'True', '-classifier', str(classifier), '-n_cpu', str(n_cpu),
'-output', foutput])
##########################################################################
##########################################################################