-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathmorrison.tex
122 lines (83 loc) · 4.14 KB
/
morrison.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
\subsubsection{The singular Schwartz function $\tilde{\psi}_{0,1}$}
In the same way as for $V$ we define
\begin{align}\label{Greeneq}
\tilde{\psi}_{0,1}(x) &= - \left(\int_1^{\infty} \psi_{0,1}^0(\sqrt{r}x) r^{-3/2} dr\right)e^{-\pi(x,x)}
\end{align}
for {\it all} $x \in W$, including $x=0$. Define $\tilde{\psi}_{0,1}^0(x)$, $\tilde{\psi}_{0,1}^0(x,s)$ as before and also
\begin{align}\label{xiZ}
\tilde{\psi}_{0,1}(x,\tau,s) &= v^{-1/2} \tilde{\psi}_{0,1}^0(\sqrt{v}x,s) e^{\pi i (x,x)\tau} = - \left( \int_v^{\infty} \psi_{0,1}^0(\sqrt{r}x,s) r^{-3/2} dr \right) e^{\pi i (x,x)\tau} \notag.
\end{align}
Note that $\tilde{\psi}_{0,1}(x,s)$ has a singularity at $D_{w,x}$. Define functions $A$ and $B$ by
\[
\tilde{\psi}_{0,1}(x) = A(x) \otimes 1 \otimes e_2 + B(x) \otimes 1 \otimes e_3
\]
and note
\begin{equation}\label{AB-eq}
-X_{23} B(x) = A(x).
\end{equation}
We extend these functions to $D_W$ as before. We see by integrating by parts
\begin{lemma}\label{firstformulaforAandB}
\begin{align*}
A(x) &=
\frac{1}{2\sqrt{\pi}} x_2 \frac{x_3}{|x_3|} \Gamma(\tfrac12,2 \pi x_3^2) e^{-\pi (x,x)} \label{AA}\\
B(x)& =
- \frac{1}{2 \sqrt{2} \pi} e^{- \pi(x_2^2+ x_3^2)} + \frac{1}{2 \sqrt{\pi}}|x_3| \Gamma(\tfrac12,2 \pi x_3^2) e^{-\pi (x,x)}.
\end{align*}
Here $\G(\tfrac12,a) = \int_a^{\infty} e^{-u} u^{-1/2} du$ is the incomplete $\G$-funtion at $s=1/2$.
\end{lemma}
$\text{It is now immediate that $B$ is continuous and bounded on $D_W$.}$ Since $A$ is clearly bounded
we find that $A$ and $B$ are locally integrable on $D_W$ and integrable and square-integrable on $W$. The singularities of $A$ and $B$ are given as follows.
\begin{lemma}\label{singularitiesofAandB}
\begin{enumerate}
\item[(i)] $B(x) - (1/2)|x_3| e^{-\pi (x,x)} $ is $C^2$ on the Minkowski plane $W$.
\item[(ii)] $A(x)- (1/2) x_2 \frac{x_3}{|x_3|} e^{-\pi (x,x)}$ is $C^1$ on the Minkowski plane $W$.
\end{enumerate}
\end{lemma}
\begin{proof}
Use Lemma \ref{firstformulaforAandB},
expand the incomplete gamma function around $x_3=0$,
and observe that $|x|x^n$ is $C^n$ for $n>0$.
\end{proof}
The key properties of $\tilde{\psi}_{0,1}$ analogous to Lemma~\ref{schluesselV} are given by
\begin{lemma}\label{schluessel}
Outside $D_{W,x}$,
\[
d\tilde{\psi}_{0,1}(x,s) = \varphi_{1,1}(x,s) \qquad \text{and} \qquad
L\tilde{\psi}_{0,1}(x,\tau) = \psi_{0,1}(x,\tau).
\]
\end{lemma}
\subsubsection{The singular function $\tilde{\psi}_{0,1}'$}
Inspired by \cite{HZ}, section~2.3, we define a functions $A'(x)$ and $B'(x)$ on $W$ by
\begin{align}\label{AB'-eq}
B'(x) &= \begin{cases} \frac12\min(|x_2-x_3|,|x_2+ x_3|)e^{- \pi (x,x)} & \text{if} \, x_2^2-x_3^2 >0,\\ 0 \ & \text{otherwise},
\end{cases} \\
A'(x) &= -X_{23}B'(x)= -\sgn(x_2x_3)B'(x). \notag
\end{align}
\begin{lemma}\label{singularitiesofA'andB'}
\begin{enumerate}
\item[(i)]
$B'(x) + \tfrac12|x_3|e^{- \pi (x,x)}$ is $C^2$ on the complement of the light-cone in $W$ and $C^2$ on nonzero $M$-orbits.
\item[(ii)]
$A'(x) + \tfrac12 x_2 \frac{x_3}{|x_3|}e^{- \pi (x,x)}$ is $C^1$ on the complement of the light-cone in $W$ and $C^1$ on nonzero $M$-orbits.
\end{enumerate}
\end{lemma}
We define $\tilde{\psi}'_{0,1}$ by
\[
\tilde{\psi}_{0,1}'(x) = A'(x) \otimes 1 \otimes e_2 + B'(x) \otimes 1 \otimes e_3
\]
and $\tilde{\psi}_{0,1}'(x,\tau,s) = v^{-1/2} m(s) \tilde{\psi}_{0,1}'(m^{-1}(s)\sqrt{v}x)) e^{\pi i (x,x)\tau}$. A little calculation shows that $\tilde{\psi}_{0,1}'(x)$ is locally constant on $D_W$ with a singularity at $D_{W,x}$ and holomorphic in $\tau$:
\begin{lemma}\label{xi'closed}
Outside $D_{W,x}$ we have
\[
d \tilde{\psi}_{0,1}'(x) = 0 \qquad \qquad \text{and} \qquad \qquad
L \tilde{\psi}_{0,1}'(x,\tau) = 0.
\]
\end{lemma}
\begin{remark}
The functions $\tilde{\psi}_{0,1}(x)$ and $\tilde{\psi}_{0,1}'(x)$ define currents on $D_W$. One can show, similarly to Section~\ref{W-currents}, that for $(x,x)>0$ we have
\begin{align*}
d[\tilde{\psi}_{0,1}(x)] = \delta_{D_{W,x} \otimes x} + [\varphi_{1,1}(x)], \qquad \qquad
d[\tilde{\psi}'_{0,1}(x)] = -\delta_{D_{W,x} \otimes x},
\end{align*}
where $D_{W,x} \otimes x$ is the $0$-cycle $D_{W,x}$ `with coefficient $x \in W$' defined in \cite{FMcoeff}.
\end{remark}