forked from camielv/UvA-BachelorAI-LB
-
Notifications
You must be signed in to change notification settings - Fork 0
/
old_approach_renewed.py
301 lines (233 loc) · 10.7 KB
/
old_approach_renewed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import csv
import perceptron
import random
import time
import re
class Main():
# Open a file
file1 = csv.reader(open('DataCSV.csv', 'rb'), delimiter=',', quotechar='"')
# Initialize dictionaries
sentence = {}
sentiment = {}
corpus = {}
probSent = {}
# Initialize lists
trainSet = []
testSet = []
# The number of sentences
num_sentences = 0
def __init__( self, iterations = 2, total_messages = 10000 ):
# Get current time
now = time.time()
# The n for the n-grams
self.n = 4
# Number of classes and distribution
self.class_distribution = [0],[-1,1,-2,2]
self.num_classes = len( self.class_distribution )
# Load the sentences and sentiments from file
self.initializeCorpus( total_messages )
# Create confusion matrix
allconfusion = [ [ 0 for x in range( self.num_classes ) ] for y in range( self.num_classes ) ]
for i in range( iterations ):
print "--- iteration", i + 1, "of", iterations, "---"
# Reset variables
self.corpus = {}
self.probSent = {}
self.trainSet = []
self.testSet = []
# Random selection of training and test data
self.makeCorpus( distribution = (0.7, 0.3) )
self.testMethod()
# Create test set
temp_set = [],[]
for j in self.testSet:
# Find the correct class
for c in range( self.num_classes ):
if self.sentiment[j] in self.class_distribution[c]:
temp_set[1].append( c )
break
# Find the classified class
m = self.probSent[j].index( max( self.probSent[j] ) )
temp_set[0].append( m )
# Create confusion matrix
confusion = [ [ 0 for x in range( self.num_classes ) ] for y in range( self.num_classes ) ]
# Fill confusion matrix
for j in range( len( temp_set[0] ) ):
clas = temp_set[0][j]
sent = temp_set[1][j]
confusion[sent][clas] += 1
print confusion
for j in range( self.num_classes ):
for k in range( self.num_classes ):
allconfusion[j][k] += confusion[j][k]
# Calculate mean
print 'Average:'
total = 0.0
for i in range( self.num_classes ):
for j in range( self.num_classes ):
allconfusion[i][j] /= float( iterations )
total += allconfusion[i][j]
#acc = (allconfusion[0][0] + allconfusion[1][1] + allconfusion[2][2]) / float(total)
print '\t\tRecall\t\tPrecision\tAccuracy'
for i in range( self.num_classes ):
row_sum = sum( allconfusion[i] )
col_sum = 0
for j in range( self.num_classes ):
col_sum += confusion[j][i]
truepositives = float(allconfusion[i][i])
truenegatives = total - row_sum - col_sum + truepositives
falsepositives = col_sum - truepositives
falsenegatives = row_sum - truepositives
rec = truepositives / (truepositives + falsenegatives )
pre = truepositives / ( truepositives + falsepositives )
acc = (truepositives + truenegatives) / total
print 'Class {0}:\t{1}\t{2}\t{3}'.format( i, rec, pre, acc )
print '\n', allconfusion
print 'Time taken for', iterations, 'iterations: ', time.time()- now
'''
Corpus methods
'''
def initializeCorpus( self, max_num = 10000, tweet_only = True ):
self.sentence = {}
self.sentiment = {}
# Initialize counter
i = 0
print 'Creating corpus with ', self.n , '- grams.'
# Collect sentences and sentiments
for entry in self.file1:
# Do not include header
if i == 0:
i+=1
continue
# Check for tweets
if tweet_only:
if int( entry[3] ) != 3:
continue
# The actual message is the 9th attribute, sentiment is the 4th
curSent = re.sub('\||#|:|;|RT|@\w+|\**', '', entry[9])
sent = float( entry[4] )
self.sentence[i - 1] = curSent
self.sentiment[i - 1] = sent
# Stop at 10000
i += 1
if ( i == max_num ):
break
# Set the number of sentences
self.num_sentences = i
print 'Number of sentences =', self.num_sentences
def tokenize( self, sentence ):
return re.findall( '\w+|\?|\!', sentence )
def clean( self, sentence ):
# print sentence
sentence = sentence.replace( ':-)', " blijesmiley " )
sentence = sentence.replace( ':)', " blijesmiley " )
sentence = sentence.replace( ':(', " zieligesmiley " )
sentence = sentence.replace( ':s', ' awkwardsmiley ' )
sentence = sentence.replace( '!', " ! " )
sentence = sentence.replace( '?', " ? " )
# delete non-expressive words
#sentence = re.sub('en|de|het|ik|jij|zij|wij|deze|dit|die|dat|is|je|na|zijn|uit|tot|te|sl|hierin|naar|onder', '', sentence)
# Delete expressions, such as links, hashtags, twitteraccountnames
sentence = re.sub( r'\:P|\:p|http\/\/t\.co\/\w+|\.|\,|\[|\]|'s|\||#|:|;|RT|\(|\)|@\w+|\**', '', sentence )
sentence = re.sub( ' +',' ', sentence )
# remove double letters
#for x in 'abcdefghijklmnopqrstuvwxyz':
# sentence = re.sub(x+'+', x, sentence )
return sentence
def makeCorpus( self, distribution ):
# Create corpus and count word frequencies
print 'Splitting corpus'
for i in range( 1, self.num_sentences ):
# Assign at random to train, test or validation set
r = random.random()
if ( r < distribution[0] ):
self.trainSet.append(i-1)
else:
self.testSet.append(i-1)
for i in self.trainSet:
# Tokenize the sentence
tk_sent = self.tokenize( self.clean( self.sentence[i] ) )
# Create temporary dictionary of dictionaries of lists
temp_ngram = {}
for k in range( 1, self.n + 1 ):
temp_ngram[k] = {}
for j in range( 1, k + 1 ):
temp_ngram[k][j] = []
count = 0;
# Iterate over every word
for word in tk_sent:
count += 1
# Loop over every n-gram
for k in range( 1, self.n + 1 ):
# Loop over every temporary instantion of an n gram
for j in range( 1, k + 1 ):
# Add this word
if count >= j:
temp_ngram[k][j].append( word )
if len( temp_ngram[k][j] ) == k:
# We found a n-gram
token = tuple( temp_ngram[k][j] )
# format: corpus[<combination of n tokens>]{neutrals, positives, negatives}
for c in range( self.num_classes ):
# Find out which class it is in
if self.sentiment[i] in self.class_distribution[c]:
if token in self.corpus:
self.corpus[token][c] += 1
else:
self.corpus[token] = [ 0 for x in range( self.num_classes ) ]
self.corpus[token][c] = 1
break
temp_ngram[k][j] = []
def testMethod(self):
print 'Testing'
# Calculate prior probabilities
sums = [ 0 for c in range( self.num_classes ) ]
for token in self.corpus.keys():
for c in range( self.num_classes ):
sums[c] += self.corpus[token][c]
totalSum = sum( sums )
priors = [ (float( sums[c] ) / totalSum) for c in range( self.num_classes ) ]
# Calculate probabilities for every sentence
for i in self.testSet:
tk_sent = self.tokenize( self.clean( self.sentence[i] ) )
# Create temporary dictionary of dictionaries of lists
temp_ngram = {}
for k in range( 1, self.n + 1 ):
temp_ngram[k] = {}
for j in range( 1, k + 1 ):
temp_ngram[k][j] = []
# Counter used for ngram finding
count = 0
# Number of found features
features = 0
# Running probability totals
classes = [ priors[c] for c in range( self.num_classes ) ]
# Iterate over every word
for word in tk_sent:
count += 1
# Loop over every n-gram
for k in range( 1, self.n + 1 ):
# Loop over every temporary instantion of an n gram
for j in range( 1, k + 1 ):
# Add this word
if count >= j:
temp_ngram[k][j].append( word )
if len( temp_ngram[k][j] ) == k:
# We found a n-gram
token = tuple( temp_ngram[k][j] )
# Check if the token is in the corpus
if token in self.corpus:
for c in range( self.num_classes ):
# If so, add the chances to the probabilities
classes[c] += float( self.corpus[token][c] ) / sum( self.corpus[token] )
features += 1
temp_ngram[k][j] = []
# Normalize to the number of features
try:
for c in range( self.num_classes ):
classes[c] /= float( features )
except:
print 'zero features found in following sentence:'
print self.sentence[i]
self.probSent[i] = classes
m = Main()