-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy path216. Combination Sum III.js
67 lines (59 loc) · 1.67 KB
/
216. Combination Sum III.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
/**
Find all possible combinations of k numbers that add up to a number n, given that only
numbers from 1 to 9 can be used and each combination should be a unique set of numbers.
Note:
All numbers will be positive integers.
The solution set must not contain duplicate combinations.
Example 1:
Input: k = 3, n = 7
Output: [[1,2,4]]
Example 2:
Input: k = 3, n = 9
Output: [[1,2,6], [1,3,5], [2,3,4]]
*/
/**
* Algorithm: Recursion, Backtracking
* 1. Declare a helper function to find next possible number and add it in the path[]
* 2. helper function() :
* base: if path.length == k and n == 0:
* copy path to new_list
* result.push(new_list)
* return
* recursive: for i = next; i <= 9; i += 1
* path.push(i)
* Increment i, decrement n by i (since add i already)
* helper(result, path, i+1, k, n-i)
* path.pop()
* 3. Declare result = [], path = [], call helper(result, path, 1, k, n)
* 4. return result
*
* T: O(9!)
* S: O(9) (result + path)
*/
/**
* @param {number} k
* @param {number} n
* @return {number[][]}
*/
let combinationSum3 = function(k, n) {
let result = [];
helper(result, [], 1, k, n);
return result;
};
let helper = function(result, path, next, k, n) {
if (path.length === k && n === 0) {
result.push([...path]);
return;
}
for (let i = next; i <= 9; i += 1) {
path.push(i);
helper(result, path, i+1, k, n-i);
path.pop();
}
}
let k1 = 3;
let n1 = 7;
console.log(combinationSum3(k1, n1)); // [[1,2,4]]
let k2 = 3;
let n2 = 9;
console.log(combinationSum3(k2, n2)); // [[1,2,6], [1,3,5], [2,3,4]]