-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProgram.R
210 lines (180 loc) · 7.86 KB
/
Program.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#############################################
############## Model with CRIX ##############
############## as input ##############
#############################################
#Normalization + formatting
dataNormalization = function(data,type){
norm_prices = normalizeData(data,type)
colnames(norm_prices)=colnames(data)
norm_prices=as.xts(norm_prices,order.by = time(data))
return(norm_prices)
}
#Function for the model:
crixModel <- function(var,model_type, size,maxit=1000){
#Index for data partition for train and test sets:
#We want to test the data on a whole year
test_time = seq(end(prices)-364,end(prices),by=1)
train_time = time(prices)[!time(prices) %in% test_time]
#Train and test sets:
intvar=colnames(prices)[grepl(var,colnames(prices))]#Response variable and Bollinger bands
#Normalization
train_=dataNormalization(prices[train_time,c(intvar,crix,exogene)],"0_1")
test_ = dataNormalization(prices[test_time,c(intvar,crix,exogene)],getNormParameters(train_))
model <- model_type(train_,
train_[,var],
size=size,
maxit=maxit,
shufflePatterns = FALSE,#TRUE
linOut = TRUE
)
#We obtain the normalized price
normprice_pred=predict(model,test_)
plot(as.numeric(test_[,var]),type="l",
ylab = "Normalized Prices",
xaxt="n",
main = paste("Normalized prices and Normalized prices prediction for",var,sep=" ")
)
lines(normprice_pred,col="red")
lablist=time(normprice_pred)[seq(0,364,by=50)+1]
axis(1, at=seq(0,364,by=50), labels = lablist)
legend("topleft",legend=c('Real','Predicted'),pch=18,col=c('black','red'), bty='n')
#Now we obtain the final prices:
price_pred = denormalizeData(normprice_pred,getNormParameters(train_))
price_pred= as.xts(price_pred,order.by = time(test_))
#Plot
plot(as.numeric(prices[time(price_pred),var]),
type="l",
ylim=c(
min(as.numeric(prices[time(price_pred),var]),as.numeric(price_pred)),
max(as.numeric(prices[time(price_pred),var]),as.numeric(price_pred))
),
ylab = "Prices",
xaxt="n",
xlab="Dates",
main = paste("Prices and prices prediction for",var,sep=" ")
)
lines(as.numeric(price_pred),col="red")
lablist=time(price_pred)[seq(0,364,by=50)+1]
axis(1, at=seq(0,364,by=50), labels = lablist)
legend("topleft",legend=c('Real','Predicted'),pch=18,col=c('black','red'), bty='n')
#We compute the RMSE for the model selection
RMSE = sqrt(sum((price_pred-prices[time(test_),var])^2)/nrow(price_pred))
return(list("model"=model,"RMSE"=RMSE,"prediction"=price_pred))
}
jordanTuning <- function(neurons,iteration){
nrOfCores <- detectCores()-1
registerDoParallel(cores = nrOfCores)
message(paste("\n Registered number of cores:\n",nrOfCores,"\n"))
startf = Sys.time()
set.seed(825)
model.jordan =list()
finalmodel.jordan=list()
for(var in endogene){
start = Sys.time()
set.seed(825)
model.jordan[[var]]= data.frame(Size=1:neurons,RMSE=1:neurons)
for(size in 1:neurons){
model.jordan[[var]][size,2]=crixModel(var,jordan,size,iteration)$RMSE
print(paste(var,": Size = ", size, sep=""))
}
print(model.jordan[[var]][model.jordan[[var]][,2]==min(model.jordan[[var]][,2]),])
finalmodel.jordan[[var]]=crixModel(var,jordan,c(model.jordan[[var]][model.jordan[[var]][,2]==min(model.jordan[[var]][,2]),1]),iteration)
end=Sys.time()
print(paste("Time for ",var, "= ", end-start,sep=""))
}
save(finalmodel.jordan,file=paste(getwd(),"/ModelJordanFinal.RData",sep=""))
endf=Sys.time()
print(paste("Total time = ",endf-startf,sep=""))
}
elmanTuning <- function(neuron1,neuron2,neuron3,iteration){
nrOfCores <- detectCores()-1
registerDoParallel(cores = nrOfCores)
message(paste("\n Registered number of cores:\n",nrOfCores,"\n"))
startf = Sys.time()
set.seed(825)
model1.elman =list()
finalmodel1.elman=list()
model2.elman=list()
finalmodel2.elman=list()
model3.elman=list()
finalmodel3.elman=list()
for(var in endogene){
start = Sys.time()
set.seed(825)
model1.elman[[var]]= data.frame(Layer=1:neuron1,RMSE=1:neuron1)
for(layer1 in 1:neuron1){
model1.elman[[var]][layer1,2]=crixModel(var,elman,c(layer1),iteration)$RMSE
print(paste(var,": Layer1 = ", layer1, sep=""))
}
print(model1.elman[[var]][model1.elman[[var]][,2]==min(model1.elman[[var]][,2]),])
finalmodel1.elman[[var]]=crixModel(var,elman,c(model1.elman[[var]][model1.elman[[var]][,2]==min(model1.elman[[var]][,2]),1]),10000)
end=Sys.time()
print(paste("Time for ",var, " layer1 = ", end-start,sep=""))
start = Sys.time()
set.seed(825)
model2.elman[[var]]= data.frame(Layer=1:neuron2,RMSE=1:neuron2)
for(layer2 in 1:neuron2){
model2.elman[[var]][layer2,2]=crixModel(var,elman,c(finalmodel1.elman[["btc"]]$model$archParams$size,layer2),10000)$RMSE
print(paste(var,": Layer2 = ", layer2, sep=""))
}
print(model2.elman[[var]][model2.elman[[var]][,2]==min(model2.elman[[var]][,2]),])
finalmodel2.elman[[var]]=crixModel(var,
elman,
c(finalmodel1.elman[["btc"]]$model$archParams$size,
model2.elman[[var]][model2.elman[[var]][,2]==min(model2.elman[[var]][,2]),1]),
iteration
)
end=Sys.time()
print(paste("Time for ",var, " layer2 = ", end-start,sep=""))
start = Sys.time()
set.seed(825)
model3.elman[[var]]= data.frame(Layer=1:neuron3,RMSE=1:neuron3)
for(layer3 in 1:neuron3){
model3.elman[[var]][layer3,2]=crixModel(var,elman,c(finalmodel2.elman[["btc"]]$model$archParams$size,layer3),10000)$RMSE
print(paste(var,": Layer3 = ", layer3, sep=""))
}
print(model3.elman[[var]][model3.elman[[var]][,2]==min(model3.elman[[var]][,2]),])
finalmodel3.elman[[var]]=crixModel(var,
elman,
c(finalmodel2.elman[["btc"]]$model$archParams$size,
model3.elman[[var]][model3.elman[[var]][,2]==min(model3.elman[[var]][,2]),1]),
iteration
)
end=Sys.time()
print(paste("Time for ",var, " layer3 = ", end-start,sep=""))
}
save(finalmodel3.elman,file=paste(getwd(),"/ModelElmanFinal.RData",sep=""))
endf=Sys.time()
print(paste("Total time = ",endf-startf,sep=""))
}
#####################
### Load Packages ###
#####################
if(!require("xts")) install.packages("xts"); library("xts")
if(!require("doParallel")) install.packages("doParallel"); library("doParallel")
if(!require("RSNNS")) install.packages("RSNNS"); library("RSNNS")
#################
### Load Data ###
#################
#prices is a clean data set without any missing values
prices = read.csv2(paste(getwd(),"/Data.csv",sep=""),sep=",",dec=".")
prices = xts(prices[,-1],order.by = as.Date(prices[,1]))
#Missing value test:
print("Missing values test in \"prices\" table")
print(apply(prices,2,function(x) sum(is.na(x))))
print("################ NO MISSING VALUE IN THE FINAL TABLE ################")
########################
# Variables selection #
########################
#Endogene variables which are modelized one by one:
endogene=c("btc","dash","xrp","xmr","ltc","doge","nxt","nmc")
#Crix variables
crix = colnames(prices)[grepl("crix",colnames(prices))]
#Exogene variables
exogene=c(colnames(prices)[grepl("Euribor",colnames(prices))],
colnames(prices)[grepl("EUR",colnames(prices))]
)
#Elman network tuning
elmanTuning(40,20,20,10000)
#Jordan network tuning
jordanTuning(40,10000)