forked from zheng-da/incubator-mxnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsymbol_vgg.R
75 lines (73 loc) · 4.21 KB
/
symbol_vgg.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
library(mxnet)
get_symbol <- function(num_classes = 1000) {
## define alexnet
data = mx.symbol.Variable(name = "data")
# group 1
conv1_1 = mx.symbol.Convolution(data = data, kernel = c(3, 3), pad = c(1, 1),
num_filter = 64, name = "conv1_1")
relu1_1 = mx.symbol.Activation(data = conv1_1, act_type = "relu", name = "relu1_1")
pool1 = mx.symbol.Pooling(data = relu1_1, pool_type = "max", kernel = c(2, 2),
stride = c(2, 2), name = "pool1")
# group 2
conv2_1 = mx.symbol.Convolution(data = pool1, kernel = c(3, 3), pad = c(1, 1),
num_filter = 128, name = "conv2_1")
relu2_1 = mx.symbol.Activation(data = conv2_1, act_type = "relu", name = "relu2_1")
pool2 = mx.symbol.Pooling(data = relu2_1, pool_type = "max", kernel = c(2, 2),
stride = c(2, 2), name = "pool2")
# group 3
conv3_1 = mx.symbol.Convolution(data = pool2, kernel = c(3, 3), pad = c(1, 1),
num_filter = 256, name = "conv3_1")
relu3_1 = mx.symbol.Activation(data = conv3_1, act_type = "relu", name = "relu3_1")
conv3_2 = mx.symbol.Convolution(data = relu3_1, kernel = c(3, 3), pad = c(1, 1),
num_filter = 256, name = "conv3_2")
relu3_2 = mx.symbol.Activation(data = conv3_2, act_type = "relu", name = "relu3_2")
pool3 = mx.symbol.Pooling(data = relu3_2, pool_type = "max", kernel = c(2, 2),
stride = c(2, 2), name = "pool3")
# group 4
conv4_1 = mx.symbol.Convolution(data = pool3, kernel = c(3, 3), pad = c(1, 1),
num_filter = 512, name = "conv4_1")
relu4_1 = mx.symbol.Activation(data = conv4_1, act_type = "relu", name = "relu4_1")
conv4_2 = mx.symbol.Convolution(data = relu4_1, kernel = c(3, 3), pad = c(1, 1),
num_filter = 512, name = "conv4_2")
relu4_2 = mx.symbol.Activation(data = conv4_2, act_type = "relu", name = "relu4_2")
pool4 = mx.symbol.Pooling(data = relu4_2, pool_type = "max",
kernel = c(2, 2), stride = c(2, 2), name = "pool4")
# group 5
conv5_1 = mx.symbol.Convolution(data = pool4, kernel = c(3, 3),
pad = c(1, 1), num_filter = 512, name = "conv5_1")
relu5_1 = mx.symbol.Activation(data = conv5_1, act_type = "relu", name = "relu5_1")
conv5_2 = mx.symbol.Convolution(data = relu5_1, kernel = c(3, 3),
pad = c(1, 1), num_filter = 512, name = "conv5_2")
relu5_2 = mx.symbol.Activation(data = conv5_2, act_type = "relu", name = "relu5_2")
pool5 = mx.symbol.Pooling(data = relu5_2, pool_type = "max",
kernel = c(2, 2), stride = c(2, 2), name = "pool5")
# group 6
flatten = mx.symbol.Flatten(data = pool5, name = "flatten")
fc6 = mx.symbol.FullyConnected(data = flatten, num_hidden = 4096, name = "fc6")
relu6 = mx.symbol.Activation(data = fc6, act_type = "relu", name = "relu6")
drop6 = mx.symbol.Dropout(data = relu6, p = 0.5, name = "drop6")
# group 7
fc7 = mx.symbol.FullyConnected(data = drop6, num_hidden = 4096, name = "fc7")
relu7 = mx.symbol.Activation(data = fc7, act_type = "relu", name = "relu7")
drop7 = mx.symbol.Dropout(data = relu7, p = 0.5, name = "drop7")
# output
fc8 = mx.symbol.FullyConnected(data = drop7, num_hidden = num_classes, name = "fc8")
softmax = mx.symbol.SoftmaxOutput(data = fc8, name = 'softmax')
return(softmax)
}