-
Notifications
You must be signed in to change notification settings - Fork 129
/
Copy pathimage_demo_mobilenetv2.py
executable file
·93 lines (70 loc) · 3.36 KB
/
image_demo_mobilenetv2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
#! /usr/bin/env python
# coding=utf-8
import cv2
import numpy as np
import core.utils as utils
import tensorflow as tf
from PIL import Image
def read_pb_return_tensors_mobilenet(graph, pb_file, ori_return_elements): # mobilenet 的tensor处理
with graph.as_default():
with tf.gfile.FastGFile( pb_file, 'rb' ) as f:
frozen_graph_def = tf.GraphDef()
frozen_graph_def.ParseFromString( f.read() )
# fix nodes
for node in frozen_graph_def.node:
if node.op == 'RefSwitch':
node.op = 'Switch'
for index in range( len( node.input ) ):
if 'moving_' in node.input[index]:
node.input[index] = node.input[index] + '/read'
elif node.op == 'AssignSub':
node.op = 'Sub'
if 'use_locking' in node.attr:
del node.attr['use_locking']
elif node.op == 'AssignAdd':
node.op = 'Add'
if 'use_locking' in node.attr:
del node.attr['use_locking']
elif node.op == 'Assign':
node.op = 'Identity'
if 'use_locking' in node.attr:
del node.attr['use_locking']
if 'validate_shape' in node.attr:
del node.attr['validate_shape']
if len( node.input ) == 2:
node.input[0] = node.input[1]
del node.input[1]
with graph.as_default():
return_elements = tf.import_graph_def( frozen_graph_def, return_elements=ori_return_elements )
return return_elements
def predict(image_path):
original_image = cv2.imread(image_path) # 读取图片
original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)
original_image_size = original_image.shape[:2]
image_data = utils.image_preporcess(np.copy(original_image), [input_size, input_size])
image_data = image_data[np.newaxis, ...]
return_tensors = read_pb_return_tensors_mobilenet(graph, pb_file, ori_return_elements)
with tf.Session(graph=graph) as sess:
pred_sbbox, pred_mbbox, pred_lbbox = sess.run(
[return_tensors[1], return_tensors[2], return_tensors[3]],
feed_dict={ return_tensors[0]: image_data})
pred_bbox = np.concatenate([np.reshape(pred_sbbox, (-1, 5 + num_classes)),
np.reshape(pred_mbbox, (-1, 5 + num_classes)),
np.reshape(pred_lbbox, (-1, 5 + num_classes))], axis=0)
bboxes = utils.postprocess_boxes(pred_bbox, original_image_size, input_size, 0.35)
bboxes = utils.nms(bboxes, 0.45, method='nms')
image = utils.draw_bbox(original_image, bboxes)
image = Image.fromarray(image)
image.show()
image.save(output_path)
if __name__ == "__main__":
# 定义基本参数变量
ori_return_elements = ["input/input_data:0", "pred_sbbox/concat_2:0", "pred_mbbox/concat_2:0", "pred_lbbox/concat_2:0"]
pb_file = "./checkpoint/yolov3_stu.pb" # "./checkpoint/yolov3_helmet.pb" # 预测文件路径
output_path = './demo.jpg'
num_classes = 2 # 类别数
input_size = 416
graph = tf.Graph()
# image_path = "./docs/normal_images/000000000080.jpg" # 这里输入预测图片路径
image_path = "./VOC2007/JPEGImages/0.jpg" # 这里输入预测图片路径
predict(image_path)