-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathkv.go
437 lines (372 loc) · 9.13 KB
/
kv.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
package geche
import (
"bytes"
"sync"
)
// Length of key to preallocate in dfs.
// It is not a hard limit, but keys longer than this will cause extra allocations.
const maxKeyLength = 512
type trieNode struct {
// Node suffix. Single byte for most nodes, but can be longer for tail node.
b []byte
// depth level
d int
// Nodes down the tree are stored in a map.
down map[byte]*trieNode
// Linked list of nodes on the same level.
next *trieNode
prev *trieNode
// Fastpath to first node on the next level for DFS.
nextLevelHead *trieNode
terminal bool
}
// Adds a new node to the linked list and returns the new head (if it has changed).
// If head did not change, return value will be nil.
// Should be called on the head node.
func (n *trieNode) addToList(node *trieNode) *trieNode {
curr := n
for {
if node.b[0] < curr.b[0] {
node.prev = curr.prev
node.next = curr
curr.prev = node
if node.prev != nil {
node.prev.next = node
}
if curr == n {
// Head has changed.
return node
}
return nil
}
if curr.next == nil {
// Adding to the end of the list.
node.prev = curr
curr.next = node
return nil
}
curr = curr.next
}
}
// Removes node from the linked list.
// Returns the new head (if it has changed).
// Returns true if the list is now empty.
// Should be called on the head node.
// Will loop forever if node is not in the list.
func (n *trieNode) removeFromList(c byte) (*trieNode, bool) {
curr := n
for {
if curr.b[0] == c {
if curr.prev != nil {
curr.prev.next = curr.next
}
if curr.next != nil {
curr.next.prev = curr.prev
}
if curr.prev == nil {
// Head has changed.
if curr.next == nil {
// List is now empty.
return nil, true
}
return curr.next, false
}
return nil, false
}
curr = curr.next
}
}
type KV[V any] struct {
data Geche[string, V]
trie *trieNode
mux sync.RWMutex
}
func NewKV[V any](
cache Geche[string, V],
) *KV[V] {
kv := KV[V]{
data: cache,
trie: &trieNode{
down: make(map[byte]*trieNode),
},
}
return &kv
}
func (kv *KV[V]) SetIfPresent(key string, value V) (V, bool) {
kv.mux.Lock()
defer kv.mux.Unlock()
previousVal, err := kv.data.Get(key)
if err == nil {
kv.set(key, value)
return previousVal, true
}
return previousVal, false
}
// Set key-value pair while updating the trie.
// Panics if key is empty.
func (kv *KV[V]) Set(key string, value V) {
kv.mux.Lock()
defer kv.mux.Unlock()
kv.set(key, value)
}
func commonPrefixLen(a, b []byte) int {
i := 0
for ; i < len(a) && i < len(b); i++ {
if a[i] != b[i] {
return i
}
}
return i
}
// Depth First Search starts with last node of the key prefix and traverses the trie,
// appending all terminal nodes to the result.
func (kv *KV[V]) dfs(node *trieNode, prefix []byte) ([]V, error) {
res := []V{}
key := make([]byte, len(prefix), maxKeyLength)
copy(key, prefix)
// If last node of the prefix is terminal, add it to the result.
if node.terminal {
val, err := kv.data.Get(string(prefix))
if err != nil {
return nil, err
}
res = append(res, val)
}
// If the node does not contain any descendants, return.
if node.nextLevelHead == nil {
return res, nil
}
// Instead of recursive DFS, we use stack-based approach.
stack := make([]*trieNode, 0, maxKeyLength)
stack = append(stack, node.nextLevelHead)
var (
top *trieNode
prevDepth int
err error
val V
)
for {
if len(stack) == 0 {
break
}
// Pop the top node from the stack.
top = stack[len(stack)-1]
stack = stack[:len(stack)-1]
if top.d > prevDepth {
// We have descended to the next level.
key = append(key, top.b...)
} else if top.d < prevDepth {
// We have ascended to the previous level.
key = key[:top.d]
key[len(key)-1] = top.b[0]
if len(top.b) > 1 {
key = append(key, top.b[1:]...)
}
} else {
key = key[:top.d]
key[len(key)-1] = top.b[0]
if len(top.b) > 1 {
key = append(key, top.b[1:]...)
}
}
prevDepth = top.d
if top.terminal {
val, err = kv.data.Get(string(key))
if err != nil {
return nil, err
}
res = append(res, val)
}
// Appending next node of the level to the stack.
if top.next != nil {
stack = append(stack, top.next)
}
// Appending next level head to the top of the stack.
if top.nextLevelHead != nil {
stack = append(stack, top.nextLevelHead)
}
}
return res, nil
}
func (kv *KV[V]) ListByPrefix(prefix string) ([]V, error) {
kv.mux.RLock()
defer kv.mux.RUnlock()
node := kv.trie
for i := 0; i < len(prefix); i++ {
next := node.down[prefix[i]]
if next == nil {
return nil, nil
}
// If we reached a multibyte tail node, we can return its value,
// since tail nodes have no descendants.
if len(next.b) > 1 && len(next.b) >= len(prefix)-i {
if bytes.Equal(next.b[:len(prefix)-i], []byte(prefix)[i:]) {
v, err := kv.data.Get(prefix + string(next.b[len(prefix)-i:]))
return []V{v}, err
}
}
node = next
}
return kv.dfs(node, []byte(prefix))
}
// Get value by key from the underlying cache.
func (kv *KV[V]) Get(key string) (V, error) {
return kv.data.Get(key)
}
// Del key from the underlying cache.
func (kv *KV[V]) Del(key string) error {
kv.mux.Lock()
defer kv.mux.Unlock()
node := kv.trie
stack := []*trieNode{}
found := false
for i := 0; i < len(key); i++ {
next := node.down[key[i]]
if next == nil {
// If we are here, the key does not exist.
return kv.data.Del(key)
}
stack = append(stack, node)
node = next
if bytes.Equal(node.b, []byte(key)[i:]) {
if node.terminal {
found = true
}
break
}
}
if !found {
// If we are here, the key does not exist.
return kv.data.Del(key)
}
node.terminal = false
// Go back the stack removing nodes with no descendants.
for i := len(stack) - 1; i >= 0; i-- {
prev := stack[i]
stack = stack[:i]
if node.nextLevelHead == nil {
head, empty := prev.nextLevelHead.removeFromList(node.b[0])
if head != nil || (head == nil && empty) {
prev.nextLevelHead = head
}
delete(prev.down, node.b[0])
}
if prev.terminal || len(prev.down) > 0 && prev == kv.trie {
break
}
node = prev
}
return kv.data.Del(key)
}
// Snapshot returns a shallow copy of the cache data.
// Sequentially locks each of she undelnying shards
// from modification for the duration of the copy.
func (kv *KV[V]) Snapshot() map[string]V {
return kv.data.Snapshot()
}
// Len returns total number of elements in the underlying caches.
func (kv *KV[V]) Len() int {
return kv.data.Len()
}
func (kv *KV[V]) set(key string, value V) {
kv.data.Set(key, value)
if key == "" {
kv.trie.terminal = true
return
}
keyb := []byte(key)
node := kv.trie
for len(keyb) > 0 {
if node.down == nil {
// Creating new level.
node.down = make(map[byte]*trieNode)
}
next := node.down[keyb[0]]
if next == nil {
// Creating new node.
next = &trieNode{
b: keyb,
d: node.d + 1,
}
node.down[keyb[0]] = next
if node.nextLevelHead == nil {
node.nextLevelHead = next
} else {
// Adding node to the linked list.
head := node.nextLevelHead.addToList(next)
if head != nil {
node.nextLevelHead = head
}
}
} else if len(next.b) == 1 {
// Single byte nodes are a simple case.
} else {
// Multi byte nodes require splitting.
// Removing node from the linked list.
head, empty := node.nextLevelHead.removeFromList(keyb[0])
if empty {
node.nextLevelHead = nil
} else if head != nil {
node.nextLevelHead = head
}
commonPrefixLen := commonPrefixLen(keyb, next.b)
for i := 0; i < commonPrefixLen; i++ {
// Creating new single-byte node.
newNode := &trieNode{
b: []byte{keyb[i]},
d: node.d + 1,
down: make(map[byte]*trieNode),
}
node.down[keyb[i]] = newNode
if node.nextLevelHead == nil {
node.nextLevelHead = newNode
} else {
head := node.nextLevelHead.addToList(newNode)
if head != nil {
node.nextLevelHead = head
}
}
node = newNode
}
if (bytes.Equal(next.b, keyb[:commonPrefixLen]) && next.terminal) || len(keyb) == commonPrefixLen {
// If last node is end of key, or end of the node we are splitting, mark it as terminal.
node.terminal = true
}
// Adding removed node back.
if len(next.b) > commonPrefixLen {
// Creating new suffix (potentially multi-byte) node.
newNode := &trieNode{
b: next.b[commonPrefixLen:],
d: node.d + 1,
terminal: true,
}
node.down[next.b[commonPrefixLen]] = newNode
node.nextLevelHead = newNode
}
// Adding new tail node.
if len(keyb) > commonPrefixLen {
// Creating new suffix (potentially multi-byte) node.
newNode := &trieNode{
b: keyb[commonPrefixLen:],
d: node.d + 1,
terminal: true,
}
node.down[keyb[commonPrefixLen]] = newNode
if node.nextLevelHead == nil {
node.nextLevelHead = newNode
} else {
head := node.nextLevelHead.addToList(newNode)
if head != nil {
node.nextLevelHead = head
}
}
}
// keyb = keyb[commonPrefixLen:]
// continue
return
}
keyb = keyb[commonPrefixLen(keyb, next.b):]
node = next
}
node.terminal = true
}