-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_net.py
62 lines (53 loc) · 1.86 KB
/
train_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.engine import default_argument_parser, default_setup, hooks, launch
from detectron2.evaluation import verify_results
from adaptor.engine import AdaptORTrainer, D2Trainer
from adaptor.config import get_cfg
from adaptor.modeling import convert_splitgn_model
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
default_setup(cfg, args)
return cfg
def main(args):
cfg = setup(args)
if args.eval_only:
trainer = AdaptORTrainer if cfg.UDA.ENABLE else D2Trainer
model = trainer.build_model(cfg)
if cfg.MODEL.USE_SPLIT_GROUP_NORM:
model = convert_splitgn_model(
model, inference_type=cfg.MODEL.SPLIT_GN_INFER_TYPE
)
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
res = trainer.test(cfg, model)
if cfg.TEST.AUG.ENABLED:
res.update(trainer.test_with_TTA(cfg, model))
if comm.is_main_process():
verify_results(cfg, res)
return res
trainer = AdaptORTrainer(cfg) if cfg.UDA.ENABLE else D2Trainer(cfg)
trainer.resume_or_load(resume=args.resume)
if cfg.TEST.AUG.ENABLED:
trainer.register_hooks(
[hooks.EvalHook(0, lambda: trainer.test_with_TTA(cfg, trainer.model))]
)
return trainer.train()
if __name__ == "__main__":
args = default_argument_parser().parse_args()
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)