-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
318 lines (262 loc) · 11.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import argparse
import os
import random
os.environ["TOKENIZERS_PARALLELISM"]='false'
os.environ["TRANSFORMERS_OFFLINE"] = "1"
from mmengine.config import Config
from codes.models import *
from codes.datasets import *
from codes.loss import *
from utils import *
import torch
import torch.multiprocessing as mp
torch.autograd.set_detect_anomaly(True)
import torch.distributed as dist
import torch.backends.cudnn as cudnn
from codes.engines.engine_clip_vl_ssl import train_vl_ssl
from codes.engines.engine_phase_video_hierarchy import train as train_hierarchy
from codes.engines.engine_val import val, evaluate_retrieval_Bert, evaluate_retrieval_CLIP, evaluate_triplet, evaluate_zero_frame
from codes.datasets.utils import bert_token_collate_fn
from torch.utils.tensorboard import SummaryWriter
def get_args(description='SurgVLP'):
parser = argparse.ArgumentParser(description=description)
parser.add_argument('--work_dir', default='', type=str, help='dir to save ')
parser.add_argument('--resume', action='store_true', help='')
args = parser.parse_args()
return args, parser
def main():
register_all_modules(init_default_scope=False)
args, _ = get_args()
config_name = os.path.join(os.path.dirname(__file__), args.work_dir, 'config.py')
configs = Config.fromfile(config_name)['config']
if args.resume:
configs['resume'] = args.resume
configs['work_dir'] = args.work_dir
if configs.seed is not None:
random.seed(configs.seed)
torch.manual_seed(configs.seed)
if configs.world_size == -1 and "SLURM_JOB_NUM_NODES" in os.environ:
configs.world_size = int(os.environ["SLURM_JOB_NUM_NODES"])
configs.rank = int(os.environ["SLURM_PROCID"])
jobid = os.environ["SLURM_JOBID"]
configs.dist_url = "file://{}.{}".format(os.path.realpath(configs.dist_file), jobid)
print(
"dist-url:{} at PROCID {} / {}".format(
configs.dist_url, configs.rank, configs.world_size
)
)
else:
print('SLURM not supported')
configs.distributed = configs.world_size > 1 or configs.multiprocessing_distributed
ngpus_per_node = torch.cuda.device_count()
if configs.multiprocessing_distributed:
configs.world_size = ngpus_per_node * configs.world_size
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, configs))
else:
main_worker(configs.gpu, ngpus_per_node, configs)
def main_worker(gpu, ngpus_per_node, args):
args.gpu = gpu
if args.distributed:
if args.multiprocessing_distributed:
args.rank = args.rank * ngpus_per_node + gpu
dist.init_process_group(
backend=args.dist_backend,
init_method=args.dist_url,
world_size=args.world_size,
rank=args.rank,
)
if args.cudnn_benchmark:
cudnn.benchmark = True
log(
"Starting training loop for rank: {}".format(
args.rank
), args
)
log(str(args), args)
# tensorboard init
# default `log_dir` is "runs" - we'll be more specific here
writer = SummaryWriter(os.path.join(args.work_dir, 'tensorlog'))
# Model Configuration
model = build_algorithm(args.model_config)
# amp scaler
scaler = None
if args.distributed:
# distributed training
if args.gpu is not None:
torch.cuda.set_device(args.gpu)
model.cuda(args.gpu)
args.batch_size_train = [int(i / ngpus_per_node) for i in args.batch_size_train]
args.batch_size_val = int(args.batch_size_val / ngpus_per_node)
args.batch_size_test = int(args.batch_size_test / ngpus_per_node)
args.num_thread_reader = int(args.num_thread_reader / ngpus_per_node)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
else:
model.cuda()
model = torch.nn.parallel.DistributedDataParallel(model, find_unused_parameters=True)
elif args.gpu is not None:
# single gpu training
torch.cuda.set_device(args.gpu)
model = model.cuda(args.gpu)
else:
model = torch.nn.DataParallel(model).cuda()
# Loading pre-trained weights for evaluation
if args.pretrain_cnn_path:
print('loading: ',args.pretrain_cnn_path)
net_data = torch.load(args.pretrain_cnn_path)['state_dict']
a, b = model.load_state_dict(net_data, strict=False)
log("=> missing keys '{}'".format(a), args)
log("=> unexpected keys '{}'".format(b), args)
# Dataset Configuration
print('Building Dataset...')
train_datasets = [build_dataset(i) for i in args.trainset_config]
val_dataset = build_dataset(args.valset_config)
# Downstream dataset for zero-shot evaluation during pretraining
zero_datasets = []
for c_list in args.cholec_autolaparo_testset_config:
zero_datasets.append([build_dataset(c) for c in c_list])
# Dataset sampler
print(args.distributed, 'distributed')
if args.distributed:
train_samplers = [torch.utils.data.distributed.DistributedSampler(train_dataset) for train_dataset in train_datasets]
val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset)
zero_samplers = []
for zero_dataset_list in zero_datasets:
zero_samplers.append([torch.utils.data.distributed.DistributedSampler(zero_dataset_vid) for zero_dataset_vid in zero_dataset_list])
else:
train_samplers = [None for train_dataset in train_datasets]
test_sampler = None
val_sampler = None
zero_samplers = []
for zero_dataset_list in zero_datasets:
zero_samplers.append([None for zero_dataset_vid in zero_dataset_list])
# Train dataloader
print('Training Dataloader...')
train_loaders = []
for idx, dataset in enumerate(train_datasets):
train_loader = torch.utils.data.DataLoader(
dataset,
batch_size=args.batch_size_train[idx],
shuffle=(train_samplers[idx] is None),
drop_last=False,
num_workers=args.num_thread_reader,
pin_memory=args.pin_memory,
sampler=train_samplers[idx],
)
train_loaders.append(train_loader)
print('Val Dataloader...')
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=args.batch_size_val,
shuffle=(val_sampler is None),
drop_last=False,
num_workers=args.num_thread_reader,
pin_memory=args.pin_memory,
sampler=val_sampler,
)
print('Zeroshot Phase Recognition Dataloader...')
# Phase recognition test dataloaders
# For each dataset, we have one loader for one video to perform video-wise phase recognition, which is same to SOTA benchmarks
# like TeCNO <https://github.com/tobiascz/TeCNO>
zero_loaders = []
for idx, dataset in enumerate(zero_datasets):
sampler_dataset = zero_samplers[idx]
vid_loaders = []
for vid_idx, vid_dataset in enumerate(dataset):
sampler = sampler_dataset[vid_idx]
zero_loader = torch.utils.data.DataLoader(
vid_dataset,
batch_size=args.batch_size_zero[idx],
shuffle=False,
drop_last=False,
num_workers=args.num_thread_reader,
pin_memory=args.pin_memory,
sampler=sampler,
)
vid_loaders.append(zero_loader)
zero_loaders.append(vid_loaders)
# Triplet test dataloaders, one loader per vid
print('Triplet Evaluation Dataloader...')
if args.triplet_mode == "test": videos = [6, 51, 10, 73, 14, 74, 32, 80, 42, 111]
elif args.triplet_mode == "val": videos = [8, 12, 29, 50, 78]
records = ['VID{}'.format(str(v).zfill(2)) for v in videos]
triplet_loaders = []
triplet_config = args.cholect50_testset_config
for vid in records:
triplet_config['list_video'] = vid
triplet_loaders.append(build_dataset(triplet_config)(batch_size=args.batch_size_test, shuffle=False))
############
# Loss Function Configuration
criterions = [build_loss(i) for i in args.loss_config_hierarchy]
# Optimizer Configuration
if args.optimizer == 'adam':
optimizer = torch.optim.Adam(model.parameters(), args.lr)
elif args.optimizer == 'sgd':
optimizer = torch.optim.SGD(model.parameters(), args.lr, momentum=args.momemtum)
# Scheduler Configuration
len_iter = [len(i) for i in train_loaders]
len_iter = sum(len_iter)
scheduler = get_cosine_schedule_with_warmup(optimizer, args.warmup_steps, (len_iter) * args.epochs)
print('Warmup steps: ', args.warmup_steps, 'Total_steps: ', len(train_loader) * args.epochs)
# optionally resume from a checkpoint
checkpoint_dir = args.work_dir
if args.resume:
checkpoint_path = get_last_checkpoint(checkpoint_dir)
if checkpoint_path:
log("=> loading checkpoint '{}'".format(checkpoint_path), args)
checkpoint = torch.load(checkpoint_path)
args.start_epoch = checkpoint["epoch"]
log("=> loaded checkpoint '{}' (epoch {})".format(checkpoint_path, checkpoint["epoch"]), args)
model.load_state_dict(checkpoint["state_dict"])
if 'optimizer' in checkpoint.keys():
optimizer.load_state_dict(checkpoint["optimizer"])
if 'scheduler' in checkpoint.keys():
scheduler.load_state_dict(checkpoint["scheduler"])
else:
log("=> no checkpoint found at '{}'".format(args.resume), args)
# Evaluate
if args.evaluate:
model.eval()
# Evaluate Triplet
evaluate_triplet(writer, triplet_loaders, model, args.start_epoch, args)
# Evaluate Zero
evaluate_zero_frame(writer, zero_loaders, model, args.start_epoch, args)
model.train()
# Epoch based training iteration
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
for train_sampler in train_samplers:
train_sampler.set_epoch(epoch)
# train each dataloader for n epoch
for idx, train_loader in enumerate(train_loaders):
train_dataset = train_datasets[idx]
train_vl_ssl(writer, train_loader, model, criterions[idx], optimizer, scheduler, epoch, train_dataset, args, scaler, idx)
val(writer, val_loader, model, criterions[0], epoch, val_dataset, args)
if epoch % args.eval_epoch == 0 and epoch != 0:
model.eval()
# Test Triplet
print('eval triplet')
evaluate_triplet(writer, triplet_loaders, model, epoch, args)
# Test Zero
print('eval recognition')
evaluate_zero_frame(writer, zero_loaders, model, epoch, args)
model.train()
if args.rank == 0:
save_checkpoint_eval(
{
"epoch": epoch + 1,
"state_dict": model.state_dict(),
"optimizer": optimizer.state_dict(),
"scheduler": scheduler.state_dict(),
}, checkpoint_dir, epoch + 1
)
if args.rank == 0:
save_checkpoint(
{
"epoch": epoch + 1,
"state_dict": model.state_dict(),
"optimizer": optimizer.state_dict(),
"scheduler": scheduler.state_dict(),
}, checkpoint_dir, epoch + 1
)
if __name__ == '__main__':
main()