This repository is the official implementation of "Enhancing Low-Density EEG-Based Brain-Computer Interface with Knowledge Distillation".
To install requirements:
git clone https://github.com/CECNL/EEG-KD.git
cd EEG-KD
conda env create -f KD.yaml
conda activate KD
Download dataset and put them to the folder "BCICIV_2a".
To train the teacher model or baseline student model (w/o KD), run this command:
python train_teacher.py --model SCCNet22 --save_folder ./savedata/SCCNet22
To train the student model, run this command:
python train_student.py --alpha 0.9 --beta 450 --save_folder ./savedata/SK --teacher_model SCCNet22 --teacher_folder ./savedata/SCCNet22
If you use this our codes in your research, please cite our paper and the related references in your publication as:
@article{,
title={},
author={},
journal={arXiv preprint},
year={2022}
}
If you use the SCCNet model, please cite the following:
@inproceedings{wei2019spatial,
title={Spatial component-wise convolutional network (SCCNet) for motor-imagery EEG classification},
author={Wei, Chun-Shu and Koike-Akino, Toshiaki and Wang, Ye},
booktitle={2019 9th International IEEE/EMBS Conference on Neural Engineering (NER)},
pages={328--331},
year={2019},
organization={IEEE}
}
If you use the EEGNet model, please cite the following:
@article{Lawhern2018,
author={Vernon J Lawhern and Amelia J Solon and Nicholas R Waytowich and Stephen M Gordon and Chou P Hung and Brent J Lance},
title={EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces},
journal={Journal of Neural Engineering},
volume={15},
number={5},
pages={056013},
url={http://stacks.iop.org/1741-2552/15/i=5/a=056013},
year={2018}
}
If you use the ShalowConvNet model, please cite the following:
@article{hbm23730,
author = {Schirrmeister Robin Tibor and
Springenberg Jost Tobias and
Fiederer Lukas Dominique Josef and
Glasstetter Martin and
Eggensperger Katharina and
Tangermann Michael and
Hutter Frank and
Burgard Wolfram and
Ball Tonio},
title = {Deep learning with convolutional neural networks for EEG decoding and visualization},
journal = {Human Brain Mapping},
volume = {38},
number = {11},
pages = {5391-5420},
keywords = {electroencephalography, EEG analysis, machine learning, end‐to‐end learning, brain–machine interface, brain–computer interface, model interpretability, brain mapping},
doi = {10.1002/hbm.23730},
url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.23730}
}