-
Notifications
You must be signed in to change notification settings - Fork 0
/
report.Rmd
562 lines (370 loc) · 19.8 KB
/
report.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
---
title: "South Gate PurpleAir Data Report"
author: "~~~~~"
output: pdf_document
params:
answer: NA
breaks: NA
d1: NA
d2: NA
d3: NA
d4: NA
dts1: NA
dts2: NA
dts3: NA
dts4: NA
daily: NA
down: NA
file2: NA
hour: NA
highlow: NA
matching: NA
over: NA
overEPA: NA
PAfull: NA
PAhourly: NA
sensor: NA
sensors: NA
summary: NA
under: NA
---
```{r setup, include=FALSE, echo=FALSE}
knitr::opts_chunk$set(echo = TRUE)
library(shiny)
library(ggplot2)
library(dplyr)
library(plotly)
library(tidyverse)
library(zoo)
library(gridExtra)
library(PurpleAirCEHAT)
library(lubridate)
date1 <- params$d1
dates1 <- c(params$dts1)
dates2 <- c(params$dts2)
dates3 <- params$dts3
dates4 <- params$dts4
answer <- params$answer
matchingDays <- params$matching
PAfull <- params$PAfull
PAhourly <- params$PAhourly
PAhi_lo <- params$highlow
downSensors <- params$down
avgSG <- params$summary
dailySG <- params$daily
sensor <- params$sensor
selectedSensors <- params$sensors
readings_underCT <- params$under
readings_overCT <- params$over
sg.city <- PurpleAirCEHAT::southgate()
EPAcols <- c("Good"="#00e400", "Moderate"="#ffff00","Unhealthy for Sensitive Groups" = "#ff7e00", "Unhealthy" = "#ff0000", "Very Unhealthy" = "#8f3f97", "Hazardous" = "#7e0023")
wessy_pal <- c("high"="#C93312","low"="#899DA4")
Krigehourly <- PAhourly %>% dplyr::filter(PAhourly$timestamp == as_datetime(date1)+ lubridate::hours(params$hour))
autoDF <- data.frame(PurpleAirCEHAT::krigePA(Krigehourly, as_datetime(date1)+ lubridate::hours(params$hour)))
```
## Overview
The following sections show the plots in each component of our interactive data analysis application.We wanted to ensure that we provided users with the most basic summary calculations for air quality data, including means, medians, maximums, minimums, and diurnal patterns as well as results that are directly comparable to other AB617 communities with active AQMD PM2.5 sensors. We also wanted to allow users to monitor the functionality of their sensor network, through summative information about particular sensors and interpolation calculations.
#### Data Cleaning
The first step of processing data downloaded from the website is formatting it for data analysis. We refer to this process as 'cleaning' data. The format of the raw sensor data changed after PurpleAir deprecated its API. So, we use two different data cleaning processes, one for the old data (data from before March 30, 2021) and one for the new data (all data from after March 30,2021).
The function that cleans the old data assumes that the comma-separated values (csv) file has two PM2.5 reading channels, as well as timestamp, humidity, latitude, and longitude columns. We correct the timestamp (so that it is adjusted to the America/Los Angeles time zone) and get rid of any values that exceed the standard EPA thresholds. Then, we use a correction factor to adjust the data so that it meets EPA standards.
The function that cleans the new data assumes the CSV file has a single PM2.5 column, as well as columns for timestamp, sensor names, latitude, longitude, humidity, and mean percent difference. To clean the new data, we adjust the timestamp to the America/Los Angeles time zone, and make sure to remove any negative PM2.5 readings in the data.
The PurpleAir sensors used in generating this report are listed below:
```{r sensors, echo=FALSE}
cat(selectedSensors, sep = "\n")
```
## Summary Statistics
For the summary statistics calculations, we refer to the general hourly PM2.5 for South Gate PurpleAir sensors. The general hourly readings are the aggregated PM2.5 values by hour, which is an average of each sensor's hourly PM2.5 readings.
```{r past3, echo=FALSE}
Average <- mean(avgSG$average_PM2.5)
historical <- ggplot(avgSG[avgSG$timestamp <= as_datetime(params$d2) & avgSG$timestamp >= as_datetime(params$d2)-lubridate::days(3),], aes(x=as_datetime(timestamp),y=average_PM2.5, group=category))+
geom_hline(aes(yintercept = Average), color="blue", linetype="dashed")+
geom_col(aes(fill=category),col=1, lwd=0.5)+
labs(x = "Day", y = "PM2.5 (micrograms/m3)") +
ggtitle("Hourly Average PM2.5")+
theme_minimal()+
scale_fill_discrete(type=EPAcols)+
theme(axis.text.x = element_text(angle = 75, hjust=1))
print(historical)
```
Similarly, we calculate the daily PM2.5 averages for South Gate PurpleAir sensors which are aggregated PM2.5 every 24 hours.
```{r pastMonth, echo=FALSE}
Average <- mean(dailySG$average_PM2.5)
historical <- ggplot(dailySG[dailySG$day <= as.Date(params$d3) & dailySG$day >= as.Date(params$d3)-lubridate::days(30),], aes(x=day,y=average_PM2.5, group=category))+
geom_hline(aes(yintercept = Average), color="blue", linetype="dashed")+
geom_col(aes(fill=category),col=1, lwd=0.5)+
labs(x = "Day", y = "PM2.5 (micrograms/m3)") +
ggtitle("Daily Average PM2.5")+
theme_minimal()+
scale_fill_discrete(type=EPAcols)+
theme(axis.text.x = element_text(angle = 75, hjust=1))
print(historical)
```
Below we use a lollipop chart to report the highs and lows of general PM2.5 values.
```{r highlow, echo=FALSE}
HighAverage <- mean(dailySG$max)
LowAverage <- mean(dailySG$min)
hilo <- ggplot(data=dailySG[dailySG$day <= as.Date(params$d4) & dailySG$day >= as.Date(params$d4)-lubridate::days(30),], aes(x=day, group = day)) +
geom_segment(aes(x=day, xend=day, y=min,yend=max),lwd=1)+
geom_point(aes(y=max, col="high"), size=5) +
geom_point(aes(y=min, col="low"), size=5)+
geom_hline(aes(yintercept = HighAverage), color="#C93312", linetype="dashed")+
geom_hline(aes(yintercept = LowAverage), color="#899DA4", linetype="dashed")+
labs(x = 'Day', y = 'PM2.5 (micrograms/m3)') +
scale_colour_manual(name="Type", values=wessy_pal, guide = guide_legend(override.aes=aes(fill=NA)) ) +
ggtitle("Daily Highs and Lows") +
theme_minimal()
print(hilo)
```
```{r overEPA, echo=FALSE}
# numDays <- length(unique(lubridate::mday(summarySG$timestamp)))
#
# # finding the days over EPA threshold
# overEPA <- params$overEPA
#
#
# if(length(overEPA$timestamp) > 0) {
# ourData <- PurpleAirCEHAT::overEPA_hist(overEPA,numDays)
# epahist <- ggplot(ourData, aes(x=day,y=freq)) +
# geom_bar(position="dodge", stat="identity") +
# ggtitle("Days over EPA threshold in South Gate")}
#
#
# print(epahist)
```
The following two graphs display 8 hour averages for two distinct, specified time periods.
```{r avgs, echo=FALSE, fig.show="hold", out.width="50%"}
par(mar = c(4, 4, .1, .1))
Title1 <- paste("8 Hour Averages From", paste(as.character(dates1), collapse = " to "))
avgs1 <- zoo::rollmean(avgSG$average_PM2.5[lubridate::date(avgSG$timestamp) >= toString(dates1[1]) & lubridate::date(avgSG$timestamp) <= toString(dates1[2])], k=8)
Title2 <- paste("8 Hour Averages From", paste(as.character(dates2), collapse = " to "))
avgs2 <- zoo::rollmean(avgSG$average_PM2.5[lubridate::date(avgSG$timestamp) >= toString(dates2[1]) & lubridate::date(avgSG$timestamp) <= toString(dates2[2])], k=8)
paste(paste(Title1,"(left)", sep=" "), paste(Title2,"(right)", sep=" "), sep=" ")
plot(avgs1,type="l", xlab = "Time", ylab = "PM2.5 (micrograms/m3)")
plot(avgs2,type="l", xlab = "Time", ylab = "PM2.5 (micrograms/m3)")
```
The following three graphs display the diurnal patterns for average, peak, the range of PM2.5 values over a 24-hour period.
```{r diAVG, echo=FALSE}
dates <- params$dts4
diurnalR <- aggregate(cbind(average_PM2.5) ~ hour, data = avgSG, FUN= function(x) {round(mean(x),2)} )
addDiurnal <- aggregate(cbind(average_PM2.5) ~ hour,
data = avgSG[as.Date(avgSG$timestamp, tz = "America/Los_Angeles") >= as.Date(dates4[1], tz = "America/Los_Angeles") &
as.Date(avgSG$timestamp, tz = "America/Los_Angeles") <= as.Date(dates4[2], tz = "America/Los_Angeles"),],
FUN= function(x) {round(mean(x),2)} )
#creating a dynamic scale for the plot
min1 <- min(diurnalR)
min2 <- min(addDiurnal)
max1 <- max(diurnalR)
max2 <- max(addDiurnal)
plot(diurnalR,type="o", lwd=1.5, main = "Average PM2.5 Values", xlab= "Hour", ylab="PM2.5 (microgams/m3)", ylim=c(min(min1,min2), max(max1,max2)))
lines(addDiurnal,type="o", lwd=1.5, col="blue")
grid()
```
```{r diMax, echo=FALSE}
diurnalR <- aggregate(cbind(max) ~ hour, data = avgSG, FUN= function(x) {round(mean(x),2)} )
addDiurnal <- aggregate(cbind(max) ~ hour,
data = avgSG[lubridate::date(avgSG$timestamp) >= toString(dates4[1]) &
lubridate::date(avgSG$timestamp) <= toString(dates4[2]),],
FUN= function(x) {round(mean(x),2)} )
#creating a dynamic scale for the plot
min1 <- min(diurnalR)
min2 <- min(addDiurnal)
max1 <- max(diurnalR)
max2 <- max(addDiurnal)
plot(diurnalR,type="o", lwd=1.5, main = "Peak PM2.5 Values", xlab= "Hour", ylab="PM2.5 (micrograms/m3)", ylim=c(min(min1,min2), max(max1,max2)))
lines(addDiurnal, type="o", lwd=1.5, col="blue")
grid()
```
```{r diRange, echo=FALSE}
diurnalR <- aggregate(cbind(range) ~ hour, data = avgSG, FUN= function(x) {round(mean(x),2)} )
addDiurnal <- aggregate(cbind(range) ~ hour,
data = avgSG[lubridate::date(avgSG$timestamp) >= toString(dates4[1]) &
lubridate::date(avgSG$timestamp) <= toString(dates4[2]),],
FUN= function(x) {round(mean(x),2)} )
#creating a dynamic scale for the plot
min1 <- min(diurnalR)
min2 <- min(addDiurnal)
max1 <- max(diurnalR)
max2 <- max(addDiurnal)
plot(diurnalR,type="o", lwd=1.5, main = "Range of PM2.5 Values", xlab= "Hour", ylab="PM2.5 (micrograms/m3)", ylim=c(min(min1,min2), max(max1,max2)))
lines(addDiurnal,type="o", lwd=1.5, col="blue")
grid()
```
This chart displays the density of peak PM2.5 values over a specified 24-hour period.
```{r density, echo=FALSE}
suppressWarnings({
dens <- ggplot(PAhi_lo[PAhi_lo$type == "high" & lubridate::date(PAhi_lo$timestamp) >= toString(dates3[1]) & lubridate::date(PAhi_lo$timestamp) <= toString(dates3[2]),], aes(x=hour, group = timeofday))+
geom_histogram(aes(y=after_stat(count/nrow(PAhi_lo[PAhi_lo$type == "high",])), color=timeofday, fill=timeofday), alpha=0.7, stat="count", bins=4, lwd=1)+
geom_density(alpha = 0.2, fill = "grey")+
labs(x = "Hour", y = "Density") +
ggtitle("Density of Peak PM2.5 Values Over 24-hour Period")+
scale_color_brewer(palette="Set1")+
scale_fill_brewer(palette="Set1")+
theme_minimal()
print(dens)
})
```
## Sensor Summaries
The Sensor Summaries plots allow users to inspect the consistency of each sensor, identify which sensors typically report higher/lower values of PM2.5, and identify which sensors typically report outliers. These plots are particularly helpful in identifying any geographically specific air quality patterns that may affect a sensor's typical functionality, and also where air quality in South Gate is better (or worse).
#### Network-Based Observations
The plots below provide a holistic inspection of the sensor network, showing where sensors report higher (or lower) values, which sensors typically report outliers, and finally, how often each of the sensors go down.
```{r catsSensors, echo=FALSE}
suppressWarnings({
plot <- ggplot(PAhourly, aes(x=names, group=category)) +
geom_histogram(aes(y=after_stat(count), fill=category), position = position_stack(reverse = TRUE), stat="count", lwd=0.5, col="black")+
labs(x = "Sensors", y = "Count") +
ggtitle("Category of Readings by Sensor")+
theme_minimal()+
scale_fill_discrete(type=EPAcols)+
theme(axis.text.x = element_text(angle = 75, hjust=1))
print(plot)
})
```
```{r downDays, echo=FALSE}
down <- ggplot(downSensors, aes(y=numDownDays))+
geom_col(aes(x= names, y=numDownDays), lwd=1)+
labs(x = "Sensors", y = "Number of Days") +
ggtitle("Number of 'Down' Days")+
coord_cartesian(ylim= c(0,max(downSensors[,2])))+
scale_color_brewer(palette="RdYlBu")+
scale_fill_brewer(palette="RdYlBu")+
theme_minimal()+
theme(axis.text.x = element_text(angle = 45, hjust=1))
print(down)
```
The following charts and spatial plots illustrate which sensors typically report higher or lower values. They report on the number of readings over/under the median that each sensor records, and the magnitude of this over/under in terms of percent difference. The median here is calculated at each hour for all the sensors in the network, and the readings are all taken to exclusively be over/under the median. The count of readings over the median for each sensor are further striated into categories of incremental percent difference that inform about how much greater, or lesser, than the median the observed readings are. This chart is useful for both identifying which sensors are typically reporting higher values, and of course, which sensors are consistently reporting outliers.
```{r overMedian, echo=FALSE}
suppressWarnings({
pct_diffCols <- c("0-15%"="#FEEDDE", "15%-50%"="#FDBE85","50%-100%" = "#FD8D3C", "200% or more"="#E6550D","total readings"="#80808050")
plot <- ggplot(readings_overCT, aes(x=names)) +
geom_col(aes(y=total_readings, fill= "total readings"), col=1) +
geom_col(aes(y=`0-15%`, fill="0-15%"), col=1) +
geom_col(aes(y=`15%-50%`, fill="15%-50%"), col=1) +
geom_col(aes(y=`50%-100%`, fill="50%-100%"), col=1) +
geom_col(aes(y=`above_200%`, fill="200% or more"), col=1) +
labs(x = "Sensors", y = "Count") +
ggtitle("Readings Over Median by Sensor")+
theme_minimal()+
scale_colour_manual(name="Values",values=pct_diffCols, guide = guide_legend(override.aes=aes(fill=NA)) ) +
scale_fill_manual(name="Values",values=pct_diffCols) +
theme(axis.text.x = element_text(angle = 75, hjust=1))
print(plot)
})
```
```{r overMap, echo=FALSE}
suppressWarnings({
k <- ggplot(readings_overCT, aes(longitude, latitude)) +
geom_path(data = sg.city, aes(long, lat, group=id), color='black')+
geom_point(aes(size= count/total_readings, color=count/total_readings)) +
scale_color_gradient(low='gold', high='red', name= "Normalized High Readings") +
guides(size=FALSE) +
xlim(-118.2325,-118.155) +
ylim(33.91029, 33.96837)+
ggtitle("Readings Over Median by Sensor")+
geom_text(aes(label=names), check_overlap = F, show.legend = F, size = 3, vjust = 2)+
theme_minimal()
print(k)
})
```
```{r underMedian, echo=FALSE}
suppressWarnings({
pct_diffCols <- c("0-15%"="#EDF8FB", "15%-50%"="#B3CDE3","50%-100%" = "#8C96C6", "200% or more"="#88419D","total readings"="#80808050")
plot <- ggplot(readings_underCT, aes(x=names)) +
geom_col(aes(y=total_readings, fill= "total readings"), col=1) +
geom_col(aes(y=`0-15%`, fill="0-15%"), col=1) +
geom_col(aes(y=`15%-50%`, fill="15%-50%"), col=1) +
geom_col(aes(y=`50%-100%`, fill="50%-100%"), col=1) +
geom_col(aes(y=`above_200%`, fill="200% or more"), col=1) +
labs(x = "Sensors", y = "Count") +
ggtitle("Readings Under Median by Sensor") +
theme_minimal()+
scale_colour_manual(name="Values",values=pct_diffCols, guide = guide_legend(override.aes=aes(fill=NA)) ) +
scale_fill_manual(name="Values",values=pct_diffCols) +
theme(axis.text.x = element_text(angle = 75, hjust=1))
print(plot)
})
```
```{r underMap, echo=FALSE}
suppressWarnings({
k <- ggplot(readings_underCT, aes(longitude, latitude)) +
geom_path(data = sg.city, aes(long, lat, group=id), color='black')+
geom_point(aes(size= count/total_readings, color=count/total_readings)) +
scale_color_gradient(low='violet', high='blue', name= "Normalized Low Values") +
xlim(-118.2325,-118.155) +
ylim(33.91029, 33.96837)+
guides(size=FALSE) +
ggtitle("Readings Under Median by Sensor")+
geom_text(aes(label=names), check_overlap = F, show.legend = F, size = 3, vjust = 2)+
theme_minimal()
print(k)
})
```
#### Single-sensor Observations
Here we have plots and observations for an individual sensor. There are visualizations for high and low values, EPA categories by percentage, and mean percent difference data (for data downloaded after March, 30, 2021).
```{r catsbysensor, echo=FALSE}
suppressWarnings({
print(ggplot(PAhourly[PAhourly$names == sensor,], aes(x=category, group=category)) +
geom_histogram(aes(y=after_stat(count/nrow(PAhourly[PAhourly$names == sensor,])), fill=category), stat="count", lwd=0.5, col="black")+
labs(x = "Sensors", y = "Count") +
ggtitle(paste("Category of Readings for", sensor)) +
theme_minimal()+
scale_fill_discrete(type=EPAcols)+
theme(axis.text.x = element_text(angle = 75, hjust=1)))
})
```
```{r pctDiff, echo=FALSE}
if (answer == "Y"){
title <- paste("Mean Percent Difference for", sensor, sep=" ")
plot(x=PAfull$timestamp[PAfull$names==sensor], y=PAfull$percent.diff[PAfull$names==sensor], xlab = "Time", ylab = "Percent Difference", main = title, ylim = c(0,100), type="l")
} else {
df <- as.data.frame(x=c(),percent.diff=c())
plot(df$x,df$percent.diff, xlim = c(0,10),ylim =c(0,100))}
```
```{r highlowSensor, echo=FALSE}
hilo <- ggplot(data=PAhi_lo[PAhi_lo$names == sensor,], aes(x=date, y=PM2.5, group = date)) +
geom_line(lwd=1)+
geom_point(data=PAhi_lo[PAhi_lo$type == "high" & PAhi_lo$names == sensor, ],
aes(x=date, y=PM2.5, group = type, col="high"), size=5)+
geom_point(data=PAhi_lo[PAhi_lo$type == "low" & PAhi_lo$names == sensor, ],
aes(x=date, y=PM2.5, group = type, col="low"), size=5)+
labs(x = 'Day', y = 'PM2.5 (μg/m3)') +
scale_colour_manual(name="Type",values=wessy_pal, guide = guide_legend(override.aes=aes(fill=NA)) ) +
scale_fill_manual(name="Type",values=wessy_pal) +
ggtitle(sensor) +
theme_minimal()
print(hilo)
```
## Interpolation and Sensor Placement
In the following plots, one can find the three outputs of the ordinary kriging results. This includes the predictions along with the variance and corresponding standard deviation of those predictions. It is important to note that better coverage reduces variance and standard deviation. So, if the user wants to know where to place more sensors, they should pick places with a higher variance/standard deviation to improve the accuracy of estimation and make the network more effective.
```{r prediction, echo=FALSE}
names(autoDF)[3] <- "predicted"
autoPred <- ggplot() + geom_tile(autoDF, mapping = aes(x,y,fill=predicted), alpha=0.90) +
geom_point(Krigehourly[,c('PM2.5',"longitude","latitude")], color ="black", size=2, pch=21, mapping = aes(longitude, latitude, fill=PM2.5), inherit.aes = TRUE) +
coord_equal() +
scale_fill_continuous(type = "viridis") +
labs(x = "longitude", y="latitude")+
theme_bw() +
ggtitle("Ordinary Kriging PM2.5 Predictions")
print(autoPred)
```
```{r variance, echo=FALSE}
names(autoDF)[4] <- "variance"
autoVars <- ggplot() + geom_tile(autoDF, mapping = aes(x,y,fill=variance), alpha=0.90) +
geom_point(Krigehourly[,c('PM2.5',"longitude","latitude")], color ="black", size=2, pch=21, mapping =aes(longitude, latitude, fill=PM2.5), inherit.aes = TRUE) +
coord_equal() +
scale_fill_continuous(type = "viridis") +
labs(x = "longitude", y="latitude")+
theme_bw() +
ggtitle("Ordinary Kriging PM2.5 Variance")
print(autoVars)
```
```{r stdev, echo=FALSE}
names(autoDF)[5] <- "standard deviation"
autoStDev <- ggplot() + geom_tile(autoDF, mapping = aes(x,y,fill=`standard deviation`), alpha=0.90) +
geom_point(Krigehourly[,c('PM2.5',"longitude","latitude")], color ="black", size=2, pch=21 , mapping =aes(longitude, latitude, fill=PM2.5), inherit.aes = TRUE) +
coord_equal() +
scale_fill_continuous(type = "viridis") +
labs(x = "longitude", y="latitude")+
theme_bw() +
ggtitle("Ordinary Kriging PM2.5 Standard Deviation")
print(autoStDev)
```