You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Describe the bug
When I run ex_prediction.py with the real fes2022b database downloaded from aviso, it takes forever, and then I get the following errors:
`{'tide': {'tide': <pyfes.core.tidal_model.CartesianComplex64 object at 0x104bb3bb0>}, 'radial': {'radial': <pyfes.core.tidal_model.CartesianComplex64 object at 0x107196e70>}}
/usr/local/Caskroom/miniforge/base/envs/venv/lib/python3.12/site-packages/pyfes/leap_seconds.py:119: UserWarning: Leap second file leap-seconds.txt has expired. Downloading a new version.
warnings.warn(
Traceback (most recent call last):
File "/Users/**/aviso-fes/examples/ex_prediction.py", line 77, in
tide, lp, _ = pyfes.evaluate_tide(handlers['tide'],
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/Caskroom/miniforge/base/envs/venv/lib/python3.12/site-packages/pyfes/init.py", line 124, in evaluate_tide
return core.evaluate_tide(
^^^^^^^^^^^^^^^^^^^
TypeError: evaluate_tide(): incompatible function arguments. The following argument types are supported:
1. (tidal_model: pyfes.core.AbstractTidalModelComplex128, date: numpy.ndarray, leap_seconds: numpy.ndarray[numpy.uint16[m, 1]], longitude: numpy.ndarray[numpy.float64[m, 1]], latitude: numpy.ndarray[numpy.float64[m, 1]], settings: Optional[pyfes.core.Settings] = None, num_threads: int = 0) -> tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.uint8[m, 1]]]
2. (tidal_model: pyfes.core.AbstractTidalModelComplex64, date: numpy.ndarray, leap_seconds: numpy.ndarray[numpy.uint16[m, 1]], longitude: numpy.ndarray[numpy.float64[m, 1]], latitude: numpy.ndarray[numpy.float64[m, 1]], settings: Optional[pyfes.core.Settings] = None, num_threads: int = 0) -> tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.uint8[m, 1]]]
Describe the bug
When I run ex_prediction.py with the real fes2022b database downloaded from aviso, it takes forever, and then I get the following errors:
`{'tide': {'tide': <pyfes.core.tidal_model.CartesianComplex64 object at 0x104bb3bb0>}, 'radial': {'radial': <pyfes.core.tidal_model.CartesianComplex64 object at 0x107196e70>}}
/usr/local/Caskroom/miniforge/base/envs/venv/lib/python3.12/site-packages/pyfes/leap_seconds.py:119: UserWarning: Leap second file leap-seconds.txt has expired. Downloading a new version.
warnings.warn(
Traceback (most recent call last):
File "/Users/**/aviso-fes/examples/ex_prediction.py", line 77, in
tide, lp, _ = pyfes.evaluate_tide(handlers['tide'],
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/Caskroom/miniforge/base/envs/venv/lib/python3.12/site-packages/pyfes/init.py", line 124, in evaluate_tide
return core.evaluate_tide(
^^^^^^^^^^^^^^^^^^^
TypeError: evaluate_tide(): incompatible function arguments. The following argument types are supported:
1. (tidal_model: pyfes.core.AbstractTidalModelComplex128, date: numpy.ndarray, leap_seconds: numpy.ndarray[numpy.uint16[m, 1]], longitude: numpy.ndarray[numpy.float64[m, 1]], latitude: numpy.ndarray[numpy.float64[m, 1]], settings: Optional[pyfes.core.Settings] = None, num_threads: int = 0) -> tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.uint8[m, 1]]]
2. (tidal_model: pyfes.core.AbstractTidalModelComplex64, date: numpy.ndarray, leap_seconds: numpy.ndarray[numpy.uint16[m, 1]], longitude: numpy.ndarray[numpy.float64[m, 1]], latitude: numpy.ndarray[numpy.float64[m, 1]], settings: Optional[pyfes.core.Settings] = None, num_threads: int = 0) -> tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.uint8[m, 1]]]
Invoked with: {'tide': <pyfes.core.tidal_model.CartesianComplex64 object at 0x104bb3bb0>}, array(['1983-01-01T00:00:00', '1983-01-01T01:00:00',
'1983-01-01T02:00:00', '1983-01-01T03:00:00',
'1983-01-01T04:00:00', '1983-01-01T05:00:00',
'1983-01-01T06:00:00', '1983-01-01T07:00:00',
'1983-01-01T08:00:00', '1983-01-01T09:00:00',
'1983-01-01T10:00:00', '1983-01-01T11:00:00',
'1983-01-01T12:00:00', '1983-01-01T13:00:00',
'1983-01-01T14:00:00', '1983-01-01T15:00:00',
'1983-01-01T16:00:00', '1983-01-01T17:00:00',
'1983-01-01T18:00:00', '1983-01-01T19:00:00',
'1983-01-01T20:00:00', '1983-01-01T21:00:00',
'1983-01-01T22:00:00', '1983-01-01T23:00:00'],
dtype='datetime64[s]'), array([21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
21, 21, 21, 21, 21, 21, 21], dtype=uint16), array([-7.688, -7.688, -7.688, -7.688, -7.688, -7.688, -7.688, -7.688,
-7.688, -7.688, -7.688, -7.688, -7.688, -7.688, -7.688, -7.688,
-7.688, -7.688, -7.688, -7.688, -7.688, -7.688, -7.688, -7.688]), array([59.195, 59.195, 59.195, 59.195, 59.195, 59.195, 59.195, 59.195,
59.195, 59.195, 59.195, 59.195, 59.195, 59.195, 59.195, 59.195,
59.195, 59.195, 59.195, 59.195, 59.195, 59.195, 59.195, 59.195]), None, 1`
pyfes/Numpy/Python version information
print(pyfes.version)
2024.11.1
print(numpy.version)
2.2.1
print(sys.version)
3.12.7 | packaged by conda-forge | (main, Oct 4 2024, 15:55:29) [Clang 17.0.6 ]
I'm using a Macbook Pro 2,5 GHz Dual-Core Intel Core i7
The text was updated successfully, but these errors were encountered: