-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathcaffepredict.sh
executable file
·221 lines (185 loc) · 7.44 KB
/
caffepredict.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
#!/bin/bash
script_dir=`dirname "$0"`
script_name=`basename $0`
version="???"
source "${script_dir}/commonfunctions.sh"
if [ -f "$script_dir/VERSION" ] ; then
version=`cat $script_dir/VERSION`
fi
gpu="all"
function usage()
{
echo "usage: $script_name [-h]
model augimagesdir outputdir
Version: $version
Runs caffe on CDeep3M model specified by model argument
to perform training. The trained model will be stored in
<model>/trainedmodel directory
Output from caffe will be redirected to <model>/log/out.log
When script completes <outputdir>/DONE file will be created
with last line containing 0 upon success.
positional arguments:
model Path to .caffemodel file or directory with caffe
model. If later then the latest is used.
augimagesdir Directory path with prefix containing the 16 .h5
files that end with v#.h5. This data would have been
created PreprocessImageData.m
outdir Destination directory to write output. Will be
created if it does not exist.
optional arguments:
-h, --help show this help message and exit
--gpu Which GPU to use, can be a number ie 0 or 1 or
all to use all GPUs (default $gpu)
" 1>&2;
exit 1;
}
TEMP=`getopt -o h --long "help,gpu:" -n '$0' -- "$@"`
eval set -- "$TEMP"
while true ; do
case "$1" in
-h ) usage ;;
--help ) usage ;;
--gpu ) gpu=$2 ; shift 2 ;;
--) shift ; break ;;
esac
done
if [ $# -ne 3 ] ; then
usage
fi
model=$1
in_dir=$2
out_dir=$3
done_file="$out_dir/PREDICTDONE"
if [ -d "$model" ] ; then
model_dir="$model"
latest_iteration=`ls "$model" | egrep "\.caffemodel$" | sed "s/^.*iter_//" | sed "s/\.caffemodel//" | sort -g | tail -n 1`
if [ "$latest_iteration" == "" ] ; then
fatal_error "$out_dir" "ERROR no #.caffemodel files found" 2
fi
model=`find "$model" -name "*${latest_iteration}.caffemodel" -type f`
else
model_dir=`dirname "$model"`
fi
deploy_dir="$model_dir/.."
log_dir="$out_dir/log"
out_log="$out_dir/out.log"
mkdir -p "$log_dir"
if [ $? != 0 ] ; then
fatal_error "$out_dir" "ERROR unable to create $log_dir" 3
fi
gpucount=`nvidia-smi -L | wc -l`
if [ "$gpucount" -eq 0 ] ; then
fatal_error "$out_dir" "ERROR unable to get count of GPU(s). Is nvidia-smi working?" 4
fi
let maxgpuindex=$gpucount-1
if [ $maxgpuindex -gt 0 ] ; then
echo -n "Detected $gpucount GPU(s)."
if [ "$gpu" == "all" ] ; then
echo " Will run in parallel."
else
echo " Using only GPU $gpu"
fi
else
echo "Single GPU detected."
fi
if [ "$gpu" == "all" ] ; then
let cntr=0
else
let cntr=$gpu
let gpucount=1
fi
theargs=""
parallel_job_file="$out_dir/parallel.jobs"
for input_file in `find "${in_dir}" -name "*.h5" -type f | sort -V` ;
do
idx=`echo $input_file | sed "s/^.*_v//" | sed "s/\.h5$//"`
predict_dir=$out_dir/v$idx;
if [ ! -d "$predict_dir" ]; then
# Control will enter here if $DIRECTORY doesn't exist.
echo "Creating directory $predict_dir" >> "$out_log"
mkdir -p "$predict_dir"
if [ $? != 0 ] ; then
fatal_error "$out_dir" "ERROR unable to create $predict_dir" 5
fi
fi
echo -e "$log_dir\n$deploy_dir\n$model\n$input_file\n$predict_dir\n$cntr" >> $parallel_job_file
if [ "$gpu" == "all" ] ; then
let cntr++
if [ $cntr -gt $maxgpuindex ] ; then
let cntr=0
fi
fi
done
# the --delay 2 is to add a 2 second delay between starting jobs
# without this jobs would fail on GPU with out of memory error
#cat $parallel_job_file | parallel --no-notice --delay 2 -N 6 -j $gpucount 'GLOG_logtostderr="{1}" /usr/bin/time -p $CAFFE_PATH/.build_release/tools/predict_seg_new.bin --model={2}/deploy.prototxt --weights={3} --data={4} --predict={5}/test.h5 --shift_axis=2 --shift_stride=1 --gpu={6}' >> "$out_log" 2>&1
line_cnt=0 # COUNTS THE LINES IN THE PARALLEL JOBS FILE
job_count=0 # COUNTS THE NUMBER OF COMMANDS IN THE cmdlets FILE
job_array="" # STORES THE PARALLEL JOB INFORMATION
cmdlets="$out_dir/cmdlets" # STORES THE COMMANDS TO RUN VIA PARALLEL
cmdsran="$out_dir/cmdruns" # STORES THE COMMANDS THAT WERE ALREADY RUN
# ---------------------------------------------------------------------------------------
# TAKES THE INFORMATION BUILT IN THE parallel.jobs FILE AND PARSES IT
# INTO A COMMAND FILE THAT CAN BE PASSED TO parallel FOR PROCESSING
# The first 4 switch cases grab the following from the parallel.jobs file in order:
# job_array[0] - GLOG folder
# job_array[1] - Training model
# job_array[2] - weights
# job_array[3] - input data
# job_array[4] - output folder
# The 5th switch injects the current line as the --gpu paramater
# Those 5 characteristics together makeup the command to be ran with predict_seg_new.bin
# via parallel
#
# Once the line_cnt is equal to 5 a command is available and the job_count increments.
# When the job_count reaches the gpucount (the max number of parallel jobs that can run)
# the jobs are then pushed into parallel. When parallel finishes blocking the commands
# are logged to the cmdsran file, the job_count is reset and the cmdlets file removed
# for the next iteration of commands.
for line in `cat $parallel_job_file`; do # EACH LINE IN THE parallel.jobs FILE
case $line_cnt in
# GLOG, model, weights, input and output
[0-4]*)
job_array[$line_cnt]=$line
;;
# The gpu number makes the final command string
5)
echo "GLOG_logtostderr=\"${job_array[0]}\" /usr/bin/time -p $CAFFE_PATH/.build_release/tools/predict_seg_new.bin --model=${job_array[1]}/deploy.prototxt --weights=${job_array[2]} --data=${job_array[3]} --predict=${job_array[4]}/test.h5 --shift_axis=2 --shift_stride=1 --gpu=$line >> \"$out_log\" 2>&1" >> $cmdlets
;;
*)
echo "I should never be here in default"
;;
esac
# IF THE line_cnt HAS REACHED 5 A COMMAND HAS BEEN BUILT
# IF THE job_count HAS REACHED THE gpucount RUN THE NUMBER OF JOBS
# IN PARALLEL THAT CAN BE RUN
if [ $line_cnt == 5 ]; then # IF THE LINE COUNT IS 5 THEN A COMMAND IS READY
line_cnt=0 # RESET THE CURRENT LINE COUNT
((job_count++)) # ADD A JOB
if [ $job_count == $gpucount ]; then # IF THE job_count HAS REACHED IT'S MAX (gpucount)
parallel --no-notice -j $gpucount < $cmdlets # RUN THE CURRENT JOB QUEUE
ecode=$?
if [ $ecode != 0 ] ; then
fatal_error "$out_dir" "ERROR non-zero exit code ($ecode) from running predict_seg_new.bin" 6
fi
job_count=0 # RESET THE JOB COUNT
cat $cmdlets >> $cmdsran # TRACK THE COMMANDS THAT WERE RUN
rm -f $cmdlets # CLEAN OLD COMMANDS
fi
else
((line_cnt++)) # INCREMENT THE CURRENT LINE COUNT
fi
done # END - for line in `cat $parallel_job_file`; do
# CHECK TO SEE IF THERE ARE ANY JOBS STILL PENDING AND RUN THEM
if [ $job_count -gt 0 ]; then
parallel --no-notice -j $gpucount < $cmdlets
ecode=$?
if [ $ecode != 0 ] ; then
fatal_error "$out_dir" "ERROR non-zero exit code ($ecode) from running predict_seg_new.bin" 6
fi
cat $cmdlets >> $cmdsran
rm -f $cmdlets
fi
echo ""
echo -e "Success\n0" >> "$done_file"
exit 0