Skip to content
This repository was archived by the owner on Jun 29, 2024. It is now read-only.

Commit 243005c

Browse files
authored
Add files via upload (#21)
1 parent 167aa02 commit 243005c

File tree

7 files changed

+152
-0
lines changed

7 files changed

+152
-0
lines changed
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,33 @@
1+
#1. Load the DataSet:
2+
import seaborn as sns
3+
iris_df = sns.load_dataset('iris')
4+
5+
#2. Exploratory Data Analysis (EDA):
6+
7+
print(iris_df.info())
8+
print(iris_df.describe())
9+
print(iris_df.head())
10+
11+
#3. Data Cleaning:
12+
13+
print(iris_df.isnull().sum())
14+
print(iris_df.duplicated().sum())
15+
16+
#4. Aggregation:
17+
18+
species_mean = iris_df.groupby('species').mean()
19+
20+
#5. Visualizations:
21+
22+
import matplotlib.pyplot as plt
23+
import seaborn as sns
24+
25+
sns.pairplot(iris_df, hue='species')
26+
plt.show()
27+
28+
sns.heatmap(iris_df.corr(), annot=True, cmap='coolwarm')
29+
plt.show()
30+
31+
#6. Correlation Calculations:
32+
33+
correlation_matrix = iris_df.corr()
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,52 @@
1+
#1. Load the Dataset:
2+
3+
from sklearn.datasets import load_boston
4+
boston = load_boston()
5+
6+
#2. Prepare the Data:
7+
8+
import pandas as pd
9+
10+
boston_df = pd.DataFrame(boston.data, columns=boston.feature_names)
11+
boston_df['PRICE'] = boston.target
12+
13+
X = boston_df.drop('PRICE', axis=1)
14+
y = boston_df['PRICE']
15+
16+
#3. Split the Data:
17+
18+
from sklearn.model_selection import train_test_split
19+
20+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
21+
22+
#4. Train the Model:
23+
24+
from sklearn.linear_model import LinearRegression
25+
26+
model = LinearRegression()
27+
model.fit(X_train, y_train)
28+
29+
#5. Evaluate the Model:
30+
31+
train_score = model.score(X_train, y_train)
32+
print(f'Training Score: {train_score}')
33+
34+
test_score = model.score(X_test, y_test)
35+
print(f'Testing Score: {test_score}')
36+
37+
#6. Plot Residuals:
38+
39+
import matplotlib.pyplot as plt
40+
41+
train_residuals = y_train - model.predict(X_train)
42+
test_residuals = y_test - model.predict(X_test)
43+
44+
plt.figure(figsize=(10, 5))
45+
plt.scatter(model.predict(X_train), train_residuals, label='Train Residuals', alpha=0.5)
46+
plt.scatter(model.predict(X_test), test_residuals, label='Test Residuals', alpha=0.5)
47+
plt.axhline(y=0, color='r', linestyle='--')
48+
plt.xlabel('Predicted Values')
49+
plt.ylabel('Residuals')
50+
plt.title('Residual Plot')
51+
plt.legend()
52+
plt.show()
Loading
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,39 @@
1+
from PIL import Image
2+
import os
3+
4+
def compress_image(input_path, output_path, quality=60):
5+
"""
6+
Compresses an input image while maintaining quality.
7+
8+
Parameters:
9+
input_path (str): Path to the input image file.
10+
output_path (str): Path to save the compressed image file.
11+
quality (int): Compression quality (0 - 95). Default is 60.
12+
13+
Returns:
14+
None
15+
"""
16+
input_image = Image.open(input_path)
17+
18+
if input_image.mode == 'RGBA':
19+
input_image = input_image.convert('RGB')
20+
21+
compressed_image = input_image.copy()
22+
compressed_image.save(output_path, quality=quality)
23+
24+
print(f"Compressed image saved at: {output_path}")
25+
26+
def main():
27+
input_path = 'C:/Users/SATHVIK/OneDrive/Desktop/Motive.png'
28+
output_folder = 'compressed_images'
29+
os.makedirs(output_folder, exist_ok=True)
30+
31+
quality = 60
32+
33+
# Compress image
34+
output_path = os.path.join(output_folder, 'compressed_image.jpg')
35+
compress_image(input_path, output_path, quality)
36+
37+
if __name__ == "__main__":
38+
main()
39+
Loading
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,28 @@
1+
from PIL import Image
2+
import os
3+
4+
def convert_image(input_path, output_path, output_format):
5+
try:
6+
with Image.open(input_path) as img:
7+
img.save(output_path, format=output_format)
8+
print(f"Image converted successfully: {input_path} -> {output_path}")
9+
except Exception as e:
10+
print(f"Error converting image: {e}")
11+
12+
def main(input_folder, output_folder, output_format):
13+
if not os.path.exists(output_folder):
14+
os.makedirs(output_folder)
15+
16+
for filename in os.listdir(input_folder):
17+
input_path = os.path.join(input_folder, filename)
18+
19+
if os.path.isfile(input_path) and any(filename.lower().endswith(ext) for ext in ['.jpg', '.jpeg', '.png', '.bmp', '.gif']):
20+
output_filename = os.path.splitext(filename)[0] + '.' + output_format.lower()
21+
output_path = os.path.join(output_folder, output_filename)
22+
23+
convert_image(input_path, output_path, output_format)
24+
25+
input_folder = 'C:/Users/SATHVIK/OneDrive/Desktop'
26+
output_folder = 'output_images'
27+
output_format = 'PNG'
28+
main(input_folder, output_folder, output_format)

0 commit comments

Comments
 (0)