-
Notifications
You must be signed in to change notification settings - Fork 300
/
Copy pathshapes.py
1589 lines (1213 loc) · 52.2 KB
/
shapes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from .geom import Vector, BoundBox, Plane
import OCC.Core.TopAbs as ta # Tolopolgy type enum
import OCC.Core.GeomAbs as ga # Geometry type enum
from OCC.Core.gp import (gp_Vec, gp_Pnt, gp_Ax1, gp_Ax2, gp_Ax3, gp_Dir, gp_Circ,
gp_Trsf, gp_Pln, gp_GTrsf, gp_Pnt2d, gp_Dir2d)
# collection of pints (used for spline construction)
from OCC.Core.TColgp import TColgp_HArray1OfPnt
from OCC.Core.BRepAdaptor import BRepAdaptor_Curve, BRepAdaptor_Surface
from OCC.Core.BRepBuilderAPI import (BRepBuilderAPI_MakeVertex,
BRepBuilderAPI_MakeEdge,
BRepBuilderAPI_MakeFace,
BRepBuilderAPI_MakePolygon,
BRepBuilderAPI_MakeWire,
BRepBuilderAPI_Sewing,
BRepBuilderAPI_MakeSolid,
BRepBuilderAPI_Copy,
BRepBuilderAPI_GTransform,
BRepBuilderAPI_Transform,
BRepBuilderAPI_Transformed,
BRepBuilderAPI_RightCorner,
BRepBuilderAPI_RoundCorner)
# properties used to store mass calculation result
from OCC.Core.GProp import GProp_GProps
from OCC.Core.BRepGProp import BRepGProp_Face, \
brepgprop_LinearProperties, \
brepgprop_SurfaceProperties, \
brepgprop_VolumeProperties # used for mass calculation
from OCC.Core.BRepLProp import BRepLProp_CLProps # local curve properties
from OCC.Core.BRepPrimAPI import (BRepPrimAPI_MakeBox,
BRepPrimAPI_MakeCone,
BRepPrimAPI_MakeCylinder,
BRepPrimAPI_MakeTorus,
BRepPrimAPI_MakeWedge,
BRepPrimAPI_MakePrism,
BRepPrimAPI_MakeRevol,
BRepPrimAPI_MakeSphere)
from OCC.Core.TopExp import TopExp_Explorer # Toplogy explorer
from OCC.Core.BRepTools import (breptools_UVBounds,
breptools_OuterWire)
# used for getting underlying geoetry -- is this equvalent to brep adaptor?
from OCC.Core.BRep import BRep_Tool, BRep_Tool_Degenerated
from OCC.Core.TopoDS import (topods_Vertex, # downcasting functions
topods_Edge,
topods_Wire,
topods_Face,
topods_Shell,
topods_Compound,
topods_Solid)
from OCC.Core.TopoDS import (TopoDS_Compound,
TopoDS_Builder)
from OCC.Core.GC import GC_MakeArcOfCircle # geometry construction
from OCC.Core.GCE2d import GCE2d_MakeSegment
from OCC.Core.GeomAPI import (GeomAPI_Interpolate,
GeomAPI_ProjectPointOnSurf)
from OCC.Core.BRepFill import brepfill_Shell, brepfill_Face
from OCC.Core.BRepAlgoAPI import (BRepAlgoAPI_Common,
BRepAlgoAPI_Fuse,
BRepAlgoAPI_Cut)
from OCC.Core.Geom import Geom_ConicalSurface, Geom_CylindricalSurface
from OCC.Core.Geom2d import Geom2d_Line
from OCC.Core.BRepLib import breplib_BuildCurves3d
from OCC.Core.BRepOffsetAPI import (BRepOffsetAPI_ThruSections,
BRepOffsetAPI_MakePipeShell,
BRepOffsetAPI_MakeThickSolid)
from OCC.Core.BRepFilletAPI import (BRepFilletAPI_MakeChamfer,
BRepFilletAPI_MakeFillet)
from OCC.Core.TopTools import (TopTools_IndexedDataMapOfShapeListOfShape,
TopTools_ListOfShape)
from OCC.Core.TopExp import topexp_MapShapesAndAncestors
from OCC.Core.ShapeFix import ShapeFix_Shape
from OCC.Core.STEPControl import STEPControl_Writer, STEPControl_AsIs
from OCC.Core.BRepMesh import BRepMesh_IncrementalMesh
from OCC.Core.StlAPI import StlAPI_Writer
from OCC.Core.ShapeUpgrade import ShapeUpgrade_UnifySameDomain
from OCC.Core.BRepTools import breptools_Write
from OCC.Core.Visualization import Tesselator
from OCC.Core.LocOpe import LocOpe_DPrism
from OCC.Core.BRepCheck import BRepCheck_Analyzer
from OCC.Core.Addons import (text_to_brep,
Font_FA_Regular,
Font_FA_Italic,
Font_FA_Bold)
from OCC.Core.BRepFeat import BRepFeat_MakeDPrism
from OCC.Core.BRepClass3d import BRepClass3d_SolidClassifier
from math import pi, sqrt
from functools import reduce
TOLERANCE = 1e-6
DEG2RAD = 2 * pi / 360.
HASH_CODE_MAX = 2147483647 # max 32bit signed int, required by OCC.Core.HashCode
shape_LUT = \
{ta.TopAbs_VERTEX: 'Vertex',
ta.TopAbs_EDGE: 'Edge',
ta.TopAbs_WIRE: 'Wire',
ta.TopAbs_FACE: 'Face',
ta.TopAbs_SHELL: 'Shell',
ta.TopAbs_SOLID: 'Solid',
ta.TopAbs_COMPOUND: 'Compound'}
shape_properties_LUT = \
{ta.TopAbs_VERTEX: None,
ta.TopAbs_EDGE: brepgprop_LinearProperties,
ta.TopAbs_WIRE: brepgprop_LinearProperties,
ta.TopAbs_FACE: brepgprop_SurfaceProperties,
ta.TopAbs_SHELL: brepgprop_SurfaceProperties,
ta.TopAbs_SOLID: brepgprop_VolumeProperties,
ta.TopAbs_COMPOUND: brepgprop_VolumeProperties}
inverse_shape_LUT = {v: k for k, v in shape_LUT.items()}
downcast_LUT = \
{ta.TopAbs_VERTEX: topods_Vertex,
ta.TopAbs_EDGE: topods_Edge,
ta.TopAbs_WIRE: topods_Wire,
ta.TopAbs_FACE: topods_Face,
ta.TopAbs_SHELL: topods_Shell,
ta.TopAbs_SOLID: topods_Solid,
ta.TopAbs_COMPOUND: topods_Compound}
geom_LUT = \
{ta.TopAbs_VERTEX: 'Vertex',
ta.TopAbs_EDGE: BRepAdaptor_Curve,
ta.TopAbs_WIRE: 'Wire',
ta.TopAbs_FACE: BRepAdaptor_Surface,
ta.TopAbs_SHELL: 'Shell',
ta.TopAbs_SOLID: 'Solid',
ta.TopAbs_COMPOUND: 'Compound'}
geom_LUT_FACE = \
{ga.GeomAbs_Plane : 'PLANE',
ga.GeomAbs_Cylinder : 'CYLINDER',
ga.GeomAbs_Cone : 'CONE',
ga.GeomAbs_Sphere : 'SPHERE',
ga.GeomAbs_Torus : 'TORUS',
ga.GeomAbs_BezierSurface : 'BEZIER',
ga.GeomAbs_BSplineSurface : 'BSPLINE',
ga.GeomAbs_SurfaceOfRevolution : 'REVOLUTION',
ga.GeomAbs_SurfaceOfExtrusion : 'EXTRUSION',
ga.GeomAbs_OffsetSurface : 'OFFSET',
ga.GeomAbs_OtherSurface : 'OTHER'}
geom_LUT_EDGE = \
{ga.GeomAbs_Line : 'LINE',
ga.GeomAbs_Circle : 'CIRCLE',
ga.GeomAbs_Ellipse : 'ELLIPSE',
ga.GeomAbs_Hyperbola : 'HYPERBOLA',
ga.GeomAbs_Parabola : 'PARABOLA',
ga.GeomAbs_BezierCurve : 'BEZIER',
ga.GeomAbs_BSplineCurve : 'BSPLINE',
ga.GeomAbs_OtherCurve : 'OTHER'}
def downcast(topods_obj):
'''
Downcasts a TopoDS object to suitable specialized type
'''
return downcast_LUT[topods_obj.ShapeType()](topods_obj)
class Shape(object):
"""
Represents a shape in the system.
Wrappers the FreeCAD api
"""
def __init__(self, obj):
self.wrapped = downcast(obj)
self.forConstruction = False
# Helps identify this solid through the use of an ID
self.label = ""
def clean(self):
"""Experimental clean using ShapeUpgrade"""
upgrader = ShapeUpgrade_UnifySameDomain(
self.wrapped, True, True, True)
upgrader.Build()
return self.cast(upgrader.Shape())
def fix(self):
"""Try to fix shape if not valid"""
if not BRepCheck_Analyzer(self.wrapped).IsValid():
sf = ShapeFix_Shape(self.wrapped)
sf.Perform()
fixed = downcast(sf.Shape())
return self.cast(fixed)
return self
@classmethod
def cast(cls, obj, forConstruction=False):
"Returns the right type of wrapper, given a FreeCAD object"
tr = None
# define the shape lookup table for casting
constructor_LUT = {ta.TopAbs_VERTEX: Vertex,
ta.TopAbs_EDGE: Edge,
ta.TopAbs_WIRE: Wire,
ta.TopAbs_FACE: Face,
ta.TopAbs_SHELL: Shell,
ta.TopAbs_SOLID: Solid,
ta.TopAbs_COMPOUND: Compound}
t = obj.ShapeType()
# NB downcast is nedded to handly TopoDS_Shape types
tr = constructor_LUT[t](downcast(obj))
tr.forConstruction = forConstruction
return tr
def exportStl(self, fileName, precision=1e-5):
mesh = BRepMesh_IncrementalMesh(self.wrapped, precision, True)
mesh.Perform()
writer = StlAPI_Writer()
return writer.Write(self.wrapped, fileName)
def exportStep(self, fileName):
writer = STEPControl_Writer()
writer.Transfer(self.wrapped, STEPControl_AsIs)
return writer.Write(fileName)
def exportBrep(self, fileName):
"""
Export given shape to a BREP file
"""
return breptools_Write(self.wrapped, fileName)
def geomType(self):
"""
Gets the underlying geometry type
:return: a string according to the geometry type.
Implementations can return any values desired, but the
values the user uses in type filters should correspond to these.
As an example, if a user does::
CQ(object).faces("%mytype")
The expectation is that the geomType attribute will return 'mytype'
The return values depend on the type of the shape:
Vertex: always 'Vertex'
Edge: LINE, ARC, CIRCLE, SPLINE
Face: PLANE, SPHERE, CONE
Solid: 'Solid'
Shell: 'Shell'
Compound: 'Compound'
Wire: 'Wire'
"""
tr = geom_LUT[self.wrapped.ShapeType()]
if type(tr) is str:
return tr
elif tr is BRepAdaptor_Curve:
return geom_LUT_EDGE[tr(self.wrapped).GetType()]
else:
return geom_LUT_FACE[tr(self.wrapped).GetType()]
def hashCode(self):
return self.wrapped.HashCode(HASH_CODE_MAX)
def isNull(self):
return self.wrapped.IsNull()
def isSame(self, other):
return self.wrapped.IsSame(other.wrapped)
def isEqual(self, other):
return self.wrapped.IsEqual(other.wrapped)
def isValid(self):
return BRepCheck_Analyzer(self.wrapped).IsValid()
def BoundingBox(self, tolerance=None): # need to implement that in GEOM
return BoundBox._fromTopoDS(self.wrapped, tol=tolerance)
def mirror(self, mirrorPlane="XY", basePointVector=(0, 0, 0)):
if mirrorPlane == "XY" or mirrorPlane == "YX":
mirrorPlaneNormalVector = gp_Dir(0, 0, 1)
elif mirrorPlane == "XZ" or mirrorPlane == "ZX":
mirrorPlaneNormalVector = gp_Dir(0, 1, 0)
elif mirrorPlane == "YZ" or mirrorPlane == "ZY":
mirrorPlaneNormalVector = gp_Dir(1, 0, 0)
if type(basePointVector) == tuple:
basePointVector = Vector(basePointVector)
T = gp_Trsf()
T.SetMirror(gp_Ax2(gp_Pnt(*basePointVector.toTuple()),
mirrorPlaneNormalVector))
return self._apply_transform(T)
@staticmethod
def _center_of_mass(shape):
Properties = GProp_GProps()
brepgprop_VolumeProperties(shape,
Properties)
return Vector(Properties.CentreOfMass())
def Center(self):
'''
Center of mass
'''
return Shape.centerOfMass(self)
def CenterOfBoundBox(self, tolerance=0.1):
return self.BoundingBox().center
@staticmethod
def CombinedCenter(objects):
"""
Calculates the center of mass of multiple objects.
:param objects: a list of objects with mass
"""
total_mass = sum(Shape.computeMass(o) for o in objects)
weighted_centers = [Shape.centerOfMass(o).multiply(
Shape.computeMass(o)) for o in objects]
sum_wc = weighted_centers[0]
for wc in weighted_centers[1:]:
sum_wc = sum_wc.add(wc)
return Vector(sum_wc.multiply(1. / total_mass))
@staticmethod
def computeMass(obj):
"""
Calculates the 'mass' of an object.
"""
Properties = GProp_GProps()
calc_function = shape_properties_LUT[obj.wrapped.ShapeType()]
if calc_function:
calc_function(obj.wrapped, Properties)
return Properties.Mass()
else:
raise NotImplementedError
@staticmethod
def centerOfMass(obj):
"""
Calculates the 'mass' of an object.
"""
Properties = GProp_GProps()
calc_function = shape_properties_LUT[obj.wrapped.ShapeType()]
if calc_function:
calc_function(obj.wrapped, Properties)
return Vector(Properties.CentreOfMass())
else:
raise NotImplementedError
@staticmethod
def CombinedCenterOfBoundBox(objects, tolerance=0.1):
"""
Calculates the center of BoundBox of multiple objects.
:param objects: a list of objects with mass 1
"""
total_mass = len(objects)
weighted_centers = []
for o in objects:
o.wrapped.tessellate(tolerance)
weighted_centers.append(o.wrapped.BoundBox.Center.multiply(1.0))
sum_wc = weighted_centers[0]
for wc in weighted_centers[1:]:
sum_wc = sum_wc.add(wc)
return Vector(sum_wc.multiply(1. / total_mass))
def Closed(self):
return self.wrapped.Closed()
def ShapeType(self):
return shape_LUT[self.wrapped.ShapeType()]
def _entities(self, topo_type):
out = {} # using dict to prevent duplicates
explorer = TopExp_Explorer(self.wrapped, inverse_shape_LUT[topo_type])
while explorer.More():
item = explorer.Current()
out[item.__hash__()] = item # some implementations use __hash__
explorer.Next()
return list(out.values())
def Vertices(self):
return [Vertex(i) for i in self._entities('Vertex')]
def Edges(self):
return [Edge(i) for i in self._entities('Edge') if not BRep_Tool_Degenerated(i)]
def Compounds(self):
return [Compound(i) for i in self._entities('Compound')]
def Wires(self):
return [Wire(i) for i in self._entities('Wire')]
def Faces(self):
return [Face(i) for i in self._entities('Face')]
def Shells(self):
return [Shell(i) for i in self._entities('Shell')]
def Solids(self):
return [Solid(i) for i in self._entities('Solid')]
def Area(self):
Properties = GProp_GProps()
brepgprop_SurfaceProperties(self.wrapped,
Properties)
return Properties.Mass()
def Volume(self):
# when density == 1, mass == volume
return Shape.computeMass(self)
def _apply_transform(self, T):
return Shape.cast(BRepBuilderAPI_Transform(self.wrapped,
T,
True).Shape())
def rotate(self, startVector, endVector, angleDegrees):
"""
Rotates a shape around an axis
:param startVector: start point of rotation axis either a 3-tuple or a Vector
:param endVector: end point of rotation axis, either a 3-tuple or a Vector
:param angleDegrees: angle to rotate, in degrees
:return: a copy of the shape, rotated
"""
if type(startVector) == tuple:
startVector = Vector(startVector)
if type(endVector) == tuple:
endVector = Vector(endVector)
T = gp_Trsf()
T.SetRotation(gp_Ax1(startVector.toPnt(),
(endVector - startVector).toDir()),
angleDegrees * DEG2RAD)
return self._apply_transform(T)
def translate(self, vector):
if type(vector) == tuple:
vector = Vector(vector)
T = gp_Trsf()
T.SetTranslation(vector.wrapped)
return self._apply_transform(T)
def scale(self, factor):
T = gp_Trsf()
T.SetScale(gp_Pnt(),
factor)
return self._apply_transform(T)
def copy(self):
return Shape.cast(BRepBuilderAPI_Copy(self.wrapped).Shape())
def transformShape(self, tMatrix):
"""
tMatrix is a matrix object.
returns a copy of the ojbect, transformed by the provided matrix,
with all objects keeping their type
"""
r = Shape.cast(BRepBuilderAPI_Transform(self.wrapped,
tMatrix.wrapped.Trsf()).Shape())
r.forConstruction = self.forConstruction
return r
def transformGeometry(self, tMatrix):
"""
tMatrix is a matrix object.
returns a copy of the object, but with geometry transformed insetad of just
rotated.
WARNING: transformGeometry will sometimes convert lines and circles to splines,
but it also has the ability to handle skew and stretching transformations.
If your transformation is only translation and rotation, it is safer to use transformShape,
which doesnt change the underlying type of the geometry, but cannot handle skew transformations
"""
r = Shape.cast(BRepBuilderAPI_GTransform(self.wrapped,
tMatrix.wrapped,
True).Shape())
r.forConstruction = self.forConstruction
return r
def __hash__(self):
return self.hashCode()
def cut(self, toCut):
"""
Remove a shape from another one
"""
return Shape.cast(BRepAlgoAPI_Cut(self.wrapped,
toCut.wrapped).Shape())
def fuse(self, toFuse):
"""
Fuse shapes together
"""
fuse_op = BRepAlgoAPI_Fuse(self.wrapped, toFuse.wrapped)
fuse_op.RefineEdges()
fuse_op.FuseEdges()
# fuse_op.SetFuzzyValue(TOLERANCE)
fuse_op.Build()
return Shape.cast(fuse_op.Shape())
def intersect(self, toIntersect):
"""
Construct shape intersection
"""
return Shape.cast(BRepAlgoAPI_Common(self.wrapped,
toIntersect.wrapped).Shape())
def _repr_html_(self):
"""
Jupyter 3D representation support
"""
from .jupyter_tools import x3d_display
return x3d_display(self.wrapped, export_edges=True)
class Vertex(Shape):
"""
A Single Point in Space
"""
def __init__(self, obj, forConstruction=False):
"""
Create a vertex from a FreeCAD Vertex
"""
super(Vertex, self).__init__(obj)
self.forConstruction = forConstruction
self.X, self.Y, self.Z = self.toTuple()
def toTuple(self):
geom_point = BRep_Tool.Pnt(self.wrapped)
return (geom_point.X(),
geom_point.Y(),
geom_point.Z())
def Center(self):
"""
The center of a vertex is itself!
"""
return Vector(self.toTuple())
@classmethod
def makeVertex(cls, x, y, z):
return cls(BRepBuilderAPI_MakeVertex(gp_Pnt(x, y, z)
).Vertex())
class Mixin1D(object):
def Length(self):
Properties = GProp_GProps()
brepgprop_LinearProperties(self.wrapped, Properties)
return Properties.Mass()
def IsClosed(self):
return BRep_Tool.IsClosed(self.wrapped)
class Edge(Shape, Mixin1D):
"""
A trimmed curve that represents the border of a face
"""
def _geomAdaptor(self):
"""
Return the underlying geometry
"""
return BRepAdaptor_Curve(self.wrapped)
def startPoint(self):
"""
:return: a vector representing the start poing of this edge
Note, circles may have the start and end points the same
"""
curve = self._geomAdaptor()
umin = curve.FirstParameter()
return Vector(curve.Value(umin))
def endPoint(self):
"""
:return: a vector representing the end point of this edge.
Note, circles may have the start and end points the same
"""
curve = self._geomAdaptor()
umax = curve.LastParameter()
return Vector(curve.Value(umax))
def tangentAt(self, locationParam=0.5):
"""
Compute tangent vector at the specified location.
:param locationParam: location to use in [0,1]
:return: tangent vector
"""
curve = self._geomAdaptor()
umin, umax = curve.FirstParameter(), curve.LastParameter()
umid = (1-locationParam)*umin + locationParam*umax
curve_props = BRepLProp_CLProps(curve, 2, curve.Tolerance())
curve_props.SetParameter(umid)
if curve_props.IsTangentDefined():
dir_handle = gp_Dir() # this is awkward due to C++ pass by ref in the API
curve_props.Tangent(dir_handle)
return Vector(dir_handle)
def Center(self):
Properties = GProp_GProps()
brepgprop_LinearProperties(self.wrapped,
Properties)
return Vector(Properties.CentreOfMass())
@classmethod
def makeCircle(cls, radius, pnt=Vector(0, 0, 0), dir=Vector(0, 0, 1), angle1=360.0, angle2=360):
"""
"""
pnt = Vector(pnt)
dir = Vector(dir)
circle_gp = gp_Circ(gp_Ax2(pnt.toPnt(),
dir.toDir()),
radius)
if angle1 == angle2: # full circle case
return cls(BRepBuilderAPI_MakeEdge(circle_gp).Edge())
else: # arc case
circle_geom = GC_MakeArcOfCircle(circle_gp,
angle1 * DEG2RAD,
angle2 * DEG2RAD,
True).Value()
return cls(BRepBuilderAPI_MakeEdge(circle_geom).Edge())
@classmethod
def makeSpline(cls, listOfVector, tangents=None, periodic=False,
tol = 1e-6):
"""
Interpolate a spline through the provided points.
:param cls:
:param listOfVector: a list of Vectors that represent the points
:param tangents: tuple of Vectors specifying start and finish tangent
:param periodic: creation of peridic curves
:param tol: tolerance of the algorithm (consult OCC documentation)
:return: an Edge
"""
pnts = TColgp_HArray1OfPnt(1, len(listOfVector))
for ix, v in enumerate(listOfVector):
pnts.SetValue(ix+1, v.toPnt())
spline_builder = GeomAPI_Interpolate(pnts, periodic, tol)
if tangents:
v1,v2 = tangents
spline_builder.Load(v1.wrapped,v2.wrapped)
spline_builder.Perform()
spline_geom = spline_builder.Curve()
return cls(BRepBuilderAPI_MakeEdge(spline_geom).Edge())
@classmethod
def makeThreePointArc(cls, v1, v2, v3):
"""
Makes a three point arc through the provided points
:param cls:
:param v1: start vector
:param v2: middle vector
:param v3: end vector
:return: an edge object through the three points
"""
circle_geom = GC_MakeArcOfCircle(v1.toPnt(),
v2.toPnt(),
v3.toPnt()).Value()
return cls(BRepBuilderAPI_MakeEdge(circle_geom).Edge())
@classmethod
def makeLine(cls, v1, v2):
"""
Create a line between two points
:param v1: Vector that represents the first point
:param v2: Vector that represents the second point
:return: A linear edge between the two provided points
"""
return cls(BRepBuilderAPI_MakeEdge(v1.toPnt(),
v2.toPnt()).Edge())
class Wire(Shape, Mixin1D):
"""
A series of connected, ordered Edges, that typically bounds a Face
"""
@classmethod
def combine(cls, listOfWires):
"""
Attempt to combine a list of wires into a new wire.
the wires are returned in a list.
:param cls:
:param listOfWires:
:return:
"""
wire_builder = BRepBuilderAPI_MakeWire()
for wire in listOfWires:
wire_builder.Add(wire.wrapped)
return cls(wire_builder.Wire())
@classmethod
def assembleEdges(cls, listOfEdges):
"""
Attempts to build a wire that consists of the edges in the provided list
:param cls:
:param listOfEdges: a list of Edge objects
:return: a wire with the edges assembled
"""
wire_builder = BRepBuilderAPI_MakeWire()
for edge in listOfEdges:
wire_builder.Add(edge.wrapped)
return cls(wire_builder.Wire())
@classmethod
def makeCircle(cls, radius, center, normal):
"""
Makes a Circle centered at the provided point, having normal in the provided direction
:param radius: floating point radius of the circle, must be > 0
:param center: vector representing the center of the circle
:param normal: vector representing the direction of the plane the circle should lie in
:return:
"""
circle_edge = Edge.makeCircle(radius, center, normal)
w = cls.assembleEdges([circle_edge])
return w
@classmethod
def makePolygon(cls, listOfVertices, forConstruction=False):
# convert list of tuples into Vectors.
wire_builder = BRepBuilderAPI_MakePolygon()
for v in listOfVertices:
wire_builder.Add(v.toPnt())
w = cls(wire_builder.Wire())
w.forConstruction = forConstruction
return w
@classmethod
def makeHelix(cls, pitch, height, radius, center=Vector(0, 0, 0),
dir=Vector(0, 0, 1), angle=360.0, lefthand=False):
"""
Make a helix with a given pitch, height and radius
By default a cylindrical surface is used to create the helix. If
the fourth parameter is set (the apex given in degree) a conical surface is used instead'
"""
# 1. build underlying cylindrical/conical surface
if angle == 360.:
geom_surf = Geom_CylindricalSurface(gp_Ax3(center.toPnt(), dir.toDir()),
radius)
else:
geom_surf = Geom_ConicalSurface(gp_Ax3(center.toPnt(), dir.toDir()),
angle * DEG2RAD,
radius)
# 2. construct an semgent in the u,v domain
if lefthand:
geom_line = Geom2d_Line(gp_Pnt2d(0.0, 0.0), gp_Dir2d(-2 * pi, pitch))
else:
geom_line = Geom2d_Line(gp_Pnt2d(0.0, 0.0), gp_Dir2d(2 * pi, pitch))
# 3. put it together into a wire
n_turns = height / pitch
u_start = geom_line.Value(0.)
u_stop = geom_line.Value(sqrt(n_turns * ((2 * pi)**2 + pitch**2)))
geom_seg = GCE2d_MakeSegment(u_start, u_stop).Value()
e = BRepBuilderAPI_MakeEdge(geom_seg, geom_surf).Edge()
# 4. Convert to wire and fix building 3d geom from 2d geom
w = BRepBuilderAPI_MakeWire(e).Wire()
breplib_BuildCurves3d(w)
return cls(w)
def stitch(self, other):
"""Attempt to stich wires"""
wire_builder = BRepBuilderAPI_MakeWire()
wire_builder.Add(topods_Wire(self.wrapped))
wire_builder.Add(topods_Wire(other.wrapped))
wire_builder.Build()
return self.__class__(wire_builder.Wire())
class Face(Shape):
"""
a bounded surface that represents part of the boundary of a solid
"""
def _geomAdaptor(self):
"""
Return the underlying geometry
"""
return BRep_Tool.Surface(self.wrapped)
def _uvBounds(self):
return breptools_UVBounds(self.wrapped)
def normalAt(self, locationVector=None):
"""
Computes the normal vector at the desired location on the face.
:returns: a vector representing the direction
:param locationVector: the location to compute the normal at. If none, the center of the face is used.
:type locationVector: a vector that lies on the surface.
"""
# get the geometry
surface = self._geomAdaptor()
if locationVector is None:
u0, u1, v0, v1 = self._uvBounds()
u = 0.5 * (u0 + u1)
v = 0.5 * (v0 + v1)
else:
# project point on surface
projector = GeomAPI_ProjectPointOnSurf(locationVector.toPnt(),
surface)
u, v = projector.LowerDistanceParameters()
p = gp_Pnt()
vn = gp_Vec()
BRepGProp_Face(self.wrapped).Normal(u, v, p, vn)
return Vector(vn)
def Center(self):
Properties = GProp_GProps()
brepgprop_SurfaceProperties(self.wrapped,
Properties)
return Vector(Properties.CentreOfMass())
def outerWire(self):
return self.cast(breptools_OuterWire(self.wrapped))
def innerWires(self):
outer = self.outerWire()
return [w for w in self.Wires() if not w.isSame(outer)]
@classmethod
def makePlane(cls, length, width, basePnt=(0, 0, 0), dir=(0, 0, 1)):
basePnt = Vector(basePnt)
dir = Vector(dir)
pln_geom = gp_Pln(basePnt.toPnt(), dir.toDir())
return cls(BRepBuilderAPI_MakeFace(pln_geom,
-width * 0.5,
width * 0.5,
-length * 0.5,
length * 0.5).Face())
@classmethod
def makeRuledSurface(cls, edgeOrWire1, edgeOrWire2, dist=None):
"""
'makeRuledSurface(Edge|Wire,Edge|Wire) -- Make a ruled surface
Create a ruled surface out of two edges or wires. If wires are used then
these must have the same number of edges
"""
if isinstance(edgeOrWire1, Wire):
return cls.cast(brepfill_Shell(edgeOrWire1.wrapped,
edgeOrWire1.wrapped))
else:
return cls.cast(brepfill_Face(edgeOrWire1.wrapped,
edgeOrWire1.wrapped))
@classmethod
def makeFromWires(cls, outerWire, innerWires=[]):
'''
Makes a planar face from one or more wires
'''
face_builder = BRepBuilderAPI_MakeFace(outerWire.wrapped,True)
for w in innerWires:
face_builder.Add(w.wrapped)
face_builder.Build()
face = face_builder.Shape()
return cls.cast(face).fix()