-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
46 lines (41 loc) · 1.75 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#encoding=utf8
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from trainer import Trainer
import argparse
# options
parser = argparse.ArgumentParser()
parser.add_argument("--batch_size", default=64, type=int)
parser.add_argument("--num_workers", default=4, type=int)
parser.add_argument("--epochs", default=200, type=int)
parser.add_argument("--split", default=0, type=int)
parser.add_argument("--validation", default=False, action='store_true')
parser.add_argument("--pretrain_model", default=None)
parser.add_argument("--noise_dim", default=100, type=int)
parser.add_argument("--projected_embed_dim", default=128, type=int)
parser.add_argument("--ngf", default=64, type=int)
parser.add_argument("--ndf", default=64, type=int)
args = parser.parse_args()
# initialize the trainer
Train = Trainer(batch_size=args.batch_size,
num_workers=args.num_workers,
epochs=args.epochs,
split=args.split,
noise_dim=args.noise_dim,
projected_embed_dim=args.projected_embed_dim,
ngf=args.ngf,
ndf=args.ndf)
if args.validation:
# test the model
Train.sample(args.pretrain_model)
else:
# train the model
Train.train()