-
Notifications
You must be signed in to change notification settings - Fork 94
/
Copy pathbilinear_upsampling.py
57 lines (50 loc) · 2.31 KB
/
bilinear_upsampling.py
1
from keras import backend as Kfrom keras.engine import Layerfrom keras.utils import conv_utilsfrom keras.engine import InputSpecclass BilinearUpsampling(Layer): """Just a simple bilinear upsampling layer. Works only with TF. Args: upsampling: tuple of 2 numbers > 0. The upsampling ratio for h and w output_size: used instead of upsampling arg if passed! """ def __init__(self, upsampling=(2, 2), output_size=None, data_format=None, **kwargs): super(BilinearUpsampling, self).__init__(**kwargs) self.data_format = conv_utils.normalize_data_format(data_format) self.input_spec = InputSpec(ndim=4) if output_size: self.output_size = conv_utils.normalize_tuple( output_size, 2, 'output_size') self.upsampling = None else: self.output_size = None self.upsampling = conv_utils.normalize_tuple( upsampling, 2, 'upsampling') def compute_output_shape(self, input_shape): if self.upsampling: height = self.upsampling[0] * \ input_shape[1] if input_shape[1] is not None else None width = self.upsampling[1] * \ input_shape[2] if input_shape[2] is not None else None else: height = self.output_size[0] width = self.output_size[1] return (input_shape[0], height, width, input_shape[3]) def call(self, inputs): if self.upsampling: return K.tf.image.resize_bilinear(inputs, (int(inputs.shape[1] * self.upsampling[0]), int(inputs.shape[2] * self.upsampling[1])), align_corners=True) else: return K.tf.image.resize_bilinear(inputs, (self.output_size[0], self.output_size[1]), align_corners=True) def get_config(self): config = {'upsampling': self.upsampling, 'output_size': self.output_size, 'data_format': self.data_format} base_config = super(BilinearUpsampling, self).get_config() return dict(list(base_config.items()) + list(config.items()))