-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathConvertDat2Root_AndTimingAnalysis.cc
853 lines (736 loc) · 25.7 KB
/
ConvertDat2Root_AndTimingAnalysis.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
//
// ********************************************************************************
// * DRS4 binary data analysis program *
// * *
// * This is a analysis program written initially to analyze the *
// * data from DRS4 for PSI muon beam compression experiment. *
// * It can be used for any experiments. List of experiments using it: *
// * 1) Muon Beam Compression at PSI, Oct 2011 *
// * 2) Development of PSF Tracker at ETH, Nov 2011 *
// * *
// * Documentation of DRS4 can be found at *
// * http://drs.web.psi.ch/docs/manual_rev31.pdf *
// * *
// * Author : Kim Siang KHAW (ETH Zurich, 27.10.2011) *
// * Contact : khaw@phys.ethz.ch *
// * *
// * History: *
// * 1st Edition : Basic histograms for visualization implemented. (27.10.2011) *
// * 2nd Edition : Tree and Branches are implemented. (02.11.2011) *
// * : Compare [0-100]bins and [101-200]bins for RMS and mean *
// * calculations. *
// * : Flagging events with more than one peak. (13.11.2011) *
// * 3rd Edition : Calculation of area below the pulse are implemented. *
// * (23.11.2011) *
// * 3.1 Edition : First 10 events from CH1 and CH2 are saved. S/N are *
// * calculated. *
// * (12.12.2011) *
// * *
// ********************************************************************************
//
// include std libraries
#include <iostream>
#include <fstream>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <cstring>
#include <string.h>
// include ROOT libraries
#include "TH1.h"
#include "TH2.h"
#include "TF1.h"
#include "TTree.h"
#include "TChain.h"
#include "TGraph.h"
#include "TStyle.h"
#include "TFolder.h"
#include "TCanvas.h"
#include "TRandom.h"
#include "TMath.h"
#include "TFile.h"
#include "TSystem.h"
#include "TProfile.h"
using namespace std;
bool _debug = false;
int main (int argc, char **argv)
{
std::cout << "********************************************************************" << std::endl;
std::cout << "***** Welcome to DRS4 data analysis *****" << std::endl;
std::cout << "********************************************************************" << std::endl;
std::cout << std::endl;
ifstream file;// read file directly
int nChannels = 4;// Assumes 4 active channels by default
int nTotalEvents = -1;
if (argc == 2)
{
//---------------------------------------------------------------
//Open file and assume all channels were active while taking data
//---------------------------------------------------------------
file.open (argv[1], ios::in | ios::binary);
std::cout << "[INFO]: Opening file " << argv[1] << " ......" << std::endl;
std::cout << endl;
if ( !file.is_open () )
{
//--------------------------------------
// terminate if the file can't be opened
//--------------------------------------
std::cerr << "!! File open error:" << argv[1] << "; make sure the file is in the correct location" << std::endl;
return 1;
}
std::cout << "[INFO] Assuming all channel were active while data was taken; for <n> channel active use ./dat2rootCP filename.dat <n>\n" << std::endl;
}
else if ( argc == 3 )
{
file.open (argv[1], ios::in | ios::binary);
cout << "[INFO] Opening file " << argv[1] << " ......" << endl;
cout << endl;
if (!file.is_open ())
{ // terminate if the file can't be opened
cerr << "!! File open error:" << argv[1] << endl;
return 1;
}
std::cout << "[INFO]: Converting a total of <" << argv[2] << "> channels \n" << std::endl;
nChannels = atoi( argv[2] );
}
else if ( argc == 4 )
{
file.open (argv[1], ios::in | ios::binary);
cout << "[INFO] Opening file " << argv[1] << " ......" << endl;
cout << endl;
if (!file.is_open ())
{ // terminate if the file can't be opened
cerr << "!! File open error:" << argv[1] << endl;
return 1;
}
std::cout << "[INFO]: Converting a total of <" << argv[2] << "> channels \n" << std::endl;
std::cout << "[INFO]: Converting a total of <" << argv[3] << "> events \n" << std::endl;
nChannels = atoi( argv[2] );
nTotalEvents = atoi( argv[3] );
}
else
{
//--------------------------------------------------------------
// terminate if there is no input file or more than 1 input file
//--------------------------------------------------------------
cerr << "[ERROR]!! No input file, please provide one" << endl;
return 1;
}
//-------------------------------------------
// automatically change XXXX.dat to XXXX.root
//-------------------------------------------
int file_len = strlen (argv[1]);
string filename = argv[1];
filename.replace (file_len - 3, 3, "root");
// input file from DRS4, (obsolete, data file is now 1st argument of the exe prog)
// ifstream file ("no-He-aligned.dat", ios::in | ios::binary);
// create a new rootfile here
TFile *treefile = new TFile ((char *) filename.c_str (), "recreate");
std::cout << ">> Creating rootfile " << filename << " ......\n" << std::endl;
// Save waveform of 1st 5 events
TH1F *CH1event1 = new TH1F ("CH1event1", "CH1event1", 1024, 0, 1024);
TH1F *CH1event2 = new TH1F ("CH1event2", "CH1event2", 1024, 0, 1024);
TH1F *CH1event3 = new TH1F ("CH1event3", "CH1event3", 1024, 0, 1024);
TH1F *CH1event4 = new TH1F ("CH1event4", "CH1event4", 1024, 0, 1024);
TH1F *CH1event5 = new TH1F ("CH1event5", "CH1event5", 1024, 0, 1024);
TH1F *CH2event1 = new TH1F ("CH2event1", "CH2event1", 1024, 0, 1024);
TH1F *CH2event2 = new TH1F ("CH2event2", "CH2event2", 1024, 0, 1024);
TH1F *CH2event3 = new TH1F ("CH2event3", "CH2event3", 1024, 0, 1024);
TH1F *CH2event4 = new TH1F ("CH2event4", "CH2event4", 1024, 0, 1024);
TH1F *CH2event5 = new TH1F ("CH2event5", "CH2event5", 1024, 0, 1024);
TH1F *CH3event1 = new TH1F ("CH3event1", "CH3event1", 1024, 0, 1024);
TH1F *CH3event2 = new TH1F ("CH3event2", "CH3event2", 1024, 0, 1024);
TH1F *CH3event3 = new TH1F ("CH3event3", "CH3event3", 1024, 0, 1024);
TH1F *CH3event4 = new TH1F ("CH3event4", "CH3event4", 1024, 0, 1024);
TH1F *CH3event5 = new TH1F ("CH3event5", "CH3event5", 1024, 0, 1024);
TH1F *CH4event1 = new TH1F ("CH4event1", "CH4event1", 1024, 0, 1024);
TH1F *CH4event2 = new TH1F ("CH4event2", "CH4event2", 1024, 0, 1024);
TH1F *CH4event3 = new TH1F ("CH4event3", "CH4event3", 1024, 0, 1024);
TH1F *CH4event4 = new TH1F ("CH4event4", "CH4event4", 1024, 0, 1024);
TH1F *CH4event5 = new TH1F ("CH4event5", "CH4event5", 1024, 0, 1024);
// Define some simple structures
struct Time_t
{
Float_t ch1;
Float_t ch2;
Float_t ch3;
Float_t ch4;
};
struct NewTime_t
{
Float_t ch1;
Float_t ch2;
Float_t ch3;
Float_t ch4;
};
struct Amplitude_t
{
Float_t ch1;
Float_t ch2;
Float_t ch3;
Float_t ch4;
};
struct Area_t
{
Float_t ch1;
Float_t ch2;
Float_t ch3;
Float_t ch4;
};
struct Mean_t
{
Float_t ch1;
Float_t ch2;
Float_t ch3;
Float_t ch4;
};
struct RMS_t
{
Float_t ch1;
Float_t ch2;
Float_t ch3;
Float_t ch4;
};
struct SoverN_t
{
Float_t ch1;
Float_t ch2;
Float_t ch3;
Float_t ch4;
};
struct Dt_t
{
Float_t ch1;
Float_t ch2;
Float_t ch3;
Float_t ch4;
};
struct Flag_t
{
Bool_t good_entrance;
Bool_t good_P1;
Bool_t good_P2;
Bool_t multipeak_ch1;
Bool_t multipeak_ch2;
Bool_t multipeak_ch3;
Bool_t multipeak_ch4;
};
struct Event_t
{
Int_t event;
};
// define time and amplitude to be fill in tree
Time_t peaktime;
NewTime_t newtime;
Amplitude_t amplitude;
Area_t area;
Mean_t mean;
RMS_t rms;
SoverN_t sovern;
// Dt_t dt;
Flag_t flag;
Event_t event;
float t1[1024], t2[1024], t3[1024], t4[1024];
int j, tcell;
float time1, time2, time3, time4, dt;
float c1[1024];
float c2[1024];
float c3[1024];
float c4[1024];
// int t1[1024];
// int t2[1024];
// int t3[1024];
// int t4[1024];
// Create a ROOT Tree
TTree *tree = new TTree ("T", "An example of ROOT tree with a few branches");
tree->Branch ("event", &event, "event/I");
tree->Branch ("peaktime", &peaktime, "ch1:ch2:ch3:ch4");
tree->Branch ("amplitude", &litude, "ch1:ch2:ch3:ch4");
tree->Branch ("mean", &mean, "ch1:ch2:ch3:ch4");
tree->Branch ("RMS", &rms, "ch1:ch2:ch3:ch4");
tree->Branch ("tcell", &tcell, "tcell/I");
tree->Branch ("c1", c1, "c1[1024]/F");
tree->Branch ("c2", c2, "c2[1024]/F");
tree->Branch ("c3", c3, "c3[1024]/F");
tree->Branch ("c4", c4, "c4[1024]/F");
tree->Branch ("t1", t1, "t1[1024]/F");
tree->Branch ("t2", t2, "t2[1024]/F");
tree->Branch ("t3", t3, "t3[1024]/F");
tree->Branch ("t4", t4, "t4[1024]/F");
//----------------------------------
//TTree to hold timing analysis data
//----------------------------------
TTree* treeOut = new TTree("tree","tree");
unsigned int eventNumber = 0;
float ch1Time_gausfitroot = 0;
float ch2Time_gausfitroot = 0;
float ch3Time_gausfitroot = 0;
float ch4Time_gausfitroot = 0;
float ch1Amp = 0;
float ch2Amp = 0;
float ch3Amp = 0;
float ch4Amp = 0;
float ch1THM = 0;//Time at half the Maximum
float ch2THM = 0;//Time at half the Maximum
float ch3THM = 0;//Time at half the Maximum
float ch4THM = 0;//Time at half the Maximum
float ch1Risetime = 0;
float ch2Risetime = 0;
float ch3Risetime = 0;
float ch4Risetime = 0;
float ch1_TFF = 0.0;
float ch2_TFF = 0.0;
float ch3_TFF = 0.0;
float ch4_TFF = 0.0;
float ch1_TFF_v2 = 0.0;
float ch2_TFF_v2 = 0.0;
float ch3_TFF_v2 = 0.0;
float ch4_TFF_v2 = 0.0;
float ch1BL = 0.0;
float ch2BL = 0.0;
float ch3BL = 0.0;
float ch4BL = 0.0;
float ch1_AFF = 0.0;
float ch2_AFF = 0.0;
float ch3_AFF = 0.0;
float ch4_AFF = 0.0;
float ch1Int = 0;
float ch2Int = 0;
float ch3Int = 0;
float ch4Int = 0;
float ch5Int = 0;
float ch6Int = 0;
float ch7Int = 0;
float ch8Int = 0;
unsigned int ch1QualityBit = 0;
unsigned int ch2QualityBit = 0;
unsigned int ch3QualityBit = 0;
unsigned int ch4QualityBit = 0;
float ch1chisq = -1;
float ch2chisq = -1;
float ch3chisq = -1;
float ch4chisq = -1;
//------------------------------
//Setting up addresses for TTree
//------------------------------
treeOut->Branch("event",&eventNumber,"event/i");
treeOut->Branch("t1gausroot",&ch1Time_gausfitroot,"t1gausroot/F");
treeOut->Branch("t2gausroot",&ch2Time_gausfitroot,"t2gausroot/F");
treeOut->Branch("t3gausroot",&ch3Time_gausfitroot,"t3gausroot/F");
treeOut->Branch("t4gausroot",&ch4Time_gausfitroot,"t4gausroot/F");
treeOut->Branch("ch1Amp",&ch1Amp,"ch1Amp/F");
treeOut->Branch("ch2Amp",&ch2Amp,"ch2Amp/F");
treeOut->Branch("ch3Amp",&ch3Amp,"ch3Amp/F");
treeOut->Branch("ch4Amp",&ch4Amp,"ch4Amp/F");
treeOut->Branch("ch1THM",&ch1THM,"ch1THM/F");
treeOut->Branch("ch2THM",&ch2THM,"ch2THM/F");
treeOut->Branch("ch3THM",&ch3THM,"ch3THM/F");
treeOut->Branch("ch4THM",&ch4THM,"ch4THM/F");
treeOut->Branch("ch1Risetime",&ch1Risetime,"ch1Risetime/F");
treeOut->Branch("ch2Risetime",&ch2Risetime,"ch2Risetime/F");
treeOut->Branch("ch3Risetime",&ch3Risetime,"ch3Risetime/F");
treeOut->Branch("ch4Risetime",&ch4Risetime,"ch4Risetime/F");
treeOut->Branch("ch1BL",&ch1BL,"ch1BL/F");
treeOut->Branch("ch2BL",&ch2BL,"ch2BL/F");
treeOut->Branch("ch3BL",&ch3BL,"ch3BL/F");
treeOut->Branch("ch4BL",&ch4BL,"ch4BL/F");
treeOut->Branch("ch1_TFF", &ch1_TFF, "ch1_TFF/F");
treeOut->Branch("ch2_TFF", &ch2_TFF, "ch2_TFF/F");
treeOut->Branch("ch3_TFF", &ch3_TFF, "ch3_TFF/F");
treeOut->Branch("ch4_TFF", &ch4_TFF, "ch4_TFF/F");
treeOut->Branch("ch1_TFF_v2", &ch1_TFF_v2, "ch1_TFF_v2/F");
treeOut->Branch("ch2_TFF_v2", &ch2_TFF_v2, "ch2_TFF_v2/F");
treeOut->Branch("ch3_TFF_v2", &ch3_TFF_v2, "ch3_TFF_v2/F");
treeOut->Branch("ch4_TFF_v2", &ch4_TFF_v2, "ch4_TFF_v2/F");
treeOut->Branch("ch1_AFF", &ch1_AFF, "ch1_AFF/F");
treeOut->Branch("ch2_AFF", &ch2_AFF, "ch2_AFF/F");
treeOut->Branch("ch3_AFF", &ch3_AFF, "ch3_AFF/F");
treeOut->Branch("ch4_AFF", &ch4_AFF, "ch4_AFF/F");
treeOut->Branch("ch1QualityBit",&ch1QualityBit,"ch1QualityBit/i");
treeOut->Branch("ch2QualityBit",&ch2QualityBit,"ch2QualityBit/i");
treeOut->Branch("ch3QualityBit",&ch3QualityBit,"ch3QualityBit/i");
treeOut->Branch("ch4QualityBit",&ch4QualityBit,"ch4QualityBit/i");
treeOut->Branch("ch1Int",&ch1Int,"ch1Int/F");
treeOut->Branch("ch2Int",&ch2Int,"ch2Int/F");
treeOut->Branch("ch3Int",&ch3Int,"ch3Int/F");
treeOut->Branch("ch4Int",&ch4Int,"ch4Int/F");
treeOut->Branch("ch1chisq",&ch1chisq,"ch1chisq/F");
treeOut->Branch("ch2chisq",&ch2chisq,"ch2chisq/F");
treeOut->Branch("ch3chisq",&ch3chisq,"ch3chisq/F");
treeOut->Branch("ch4chisq",&ch4chisq,"ch4chisq/F");
bool includePulseshapeInOutput = true;
if (includePulseshapeInOutput) {
treeOut->Branch("c1",c1,"c1[1024]/F");
treeOut->Branch("c2",c2,"c2[1024]/F");
treeOut->Branch("c3",c3,"c3[1024]/F");
treeOut->Branch("c4",c4,"c4[1024]/F");
treeOut->Branch("t1",t1,"ti1[1024]/F");
treeOut->Branch("t2",t2,"ti2[1024]/F");
treeOut->Branch("t3",t3,"ti3[1024]/F");
treeOut->Branch("t4",t4,"ti4[1024]/F");
}
char EventHeader[5];
int SerialNumber;
short Date[8];
float EventTime[1024];
char ChannelHeader[5];
char Scaler[5];
// unsigned short RawChannelData[1024];
unsigned short ChannelDataRaw[1024];
unsigned short ChannelData[1024];
float ChannelDataVoltage[1024];
bool loopchannel = true;
bool endoffile = false;
int n (0);
// double time1 (0);
clock_t start = clock ();
time_t realtime;
float EventTime1[1024];
float EventTime2[1024];
float EventTime3[1024];
float EventTime4[1024];
std::cout << ">> Start reading file" << argv[1] << " ......\n" << std::endl;
// Read additional headers introduced in v5 of DRS software
char tmpTimeHeader[6];
file.read ((char *) &tmpTimeHeader, 4);
cout << tmpTimeHeader << "\n";
file.read ((char *) &tmpTimeHeader, 4);
cout << tmpTimeHeader << "\n";
char tmpBoardSerialNumber[6];
file.read ((char *) &tmpBoardSerialNumber, 4);
for ( int i = 0; i < nChannels; i++ )
{
char tmpChannel1Header[5];
file.read ((char *) &tmpChannel1Header, 4);
cout << tmpChannel1Header << "\n";
if ( strcmp( tmpChannel1Header,"C001" ) == 0 ) file.read ((char *) &EventTime1, 4096);
else if ( strcmp( tmpChannel1Header,"C002" ) == 0 ) file.read ((char *) &EventTime2, 4096);
else if ( strcmp( tmpChannel1Header,"C003" ) == 0 ) file.read ((char *) &EventTime3, 4096);
else if ( strcmp( tmpChannel1Header,"C004" ) == 0 ) file.read ((char *) &EventTime4, 4096);
else
{
std::cerr << "[ERROR]: something is wrong with the data! the active channels are not what they are suppose to be" << std::endl;
return -1;
}
}
// Read event header
file.read ((char *) &EventHeader, 4);
EventHeader[4] = '\0';
std::cout << EventHeader << std::endl;
std::cout << "\nSTART\n";
while (!endoffile)
{ // event loop
// Count Event, show the progress every 1000 events
if (n % 1000 == 0)
{
time (&realtime);
std::cout << ">> Processing event No." << n << ", Time elapsed : " <<
(double) (clock () -
start) /
CLOCKS_PER_SEC << " secs, Current time : " << ctime (&realtime) <<
std::endl;
//start = clock ();
}
//-------------------------------------------------------------------------
// stop conversion if <nTotalEvents> is provided via command line arguments
//-------------------------------------------------------------------------
if ( nTotalEvents != -1 && n > nTotalEvents ) break;
++n; // n + 1
// if(n>2) break;
event.event = n;
// Read serial number
file.read ((char *) &SerialNumber, 4);
//cout << "Event Serial Number " << SerialNumber << "\n";
// Read date (YY/MM/DD/HH/mm/ss/ms/rr)
unsigned short Year;
unsigned short Month;
unsigned short Day;
unsigned short Hour;
unsigned short Minute;
unsigned short Second;
unsigned short Millisecond;
unsigned short Range;
// file.read ((char *) &Date, 16);
// cout << "Event date/time 16-bit values "<< Date << "\n";
file.read ((char *) &Year, 2);
file.read ((char *) &Month, 2);
file.read ((char *) &Day, 2);
file.read ((char *) &Hour, 2);
file.read ((char *) &Minute, 2);
file.read ((char *) &Second, 2);
file.read ((char *) &Millisecond, 2);
file.read ((char *) &Range, 2);
if ( _debug )
{
std::cout << "Event date/time: Year: "<< Year
<<", Month: "<<Month
<<", Day: " <<Day
<<", Hour: "<< Hour
<<", Minute: "<< Minute
<<", Second: "<<Second
<<", Millisecond: "<<Millisecond
<<",Range: "<<Range
<< std::endl;
}
// int LastTime;
// int CurrentTime;
// int PassedTime;
// int RunTime;
// calculate time since last event in milliseconds
// LastTime = CurrentTime;
// CurrentTime =
// Date[3] * 3600000 + Date[4] * 60000 + Date[5] * 1000 + Date[6];
// Read event times
char tmpBoardNumber[5];
file.read ((char *) &tmpBoardNumber, 2);
short int tempB;
file.read ((char *) &tempB, 2);
if ( _debug ) cout << "Board serial number: "<<tmpBoardNumber<<" "<<tempB << "\n";
char tmpTriggerCell[5];
file.read ((char *) &tmpTriggerCell, 2);
if ( _debug ) cout << tmpTriggerCell << "\n";
short int tmpT;//real trigger cell;
file.read ((char *) &tmpT, 2);
if ( _debug ) std::cout << "Number of first readout cell "<<tmpT << std::endl;
if ( _debug ) std::cout << "Trigger Cell " << tmpTriggerCell << std::endl;
//--------------------------------------------
//Assign trigger cell to variable in the TTree
//--------------------------------------------
tcell = tmpT;
while (loopchannel) // loop all available channels. When reach end of event, will be stopped.
{
// Read channel header
file.read ((char *) &ChannelHeader, 4);
ChannelHeader[4] = '\0';
if ( _debug ) std::cout << "Channel Header : " << ChannelHeader << std::endl;
if (strcmp (ChannelHeader, "EHDR") == 0)
{
break;
}
else if (file.eof ())
{
endoffile = true;
break;
}
file.read ((char *) &Scaler, 4);
Scaler[4] = '\0';
//cout << "Scaler : " << Scaler << endl;
// get amplitude of each channel
file.read ((char *) &ChannelDataRaw, 2048);
for (int i = 0; i < 1024; i++)
{
ChannelData[i] = ChannelDataRaw[i];
ChannelDataVoltage[i] = ChannelDataRaw[i]/65535.-0.5;
//cout << i << " : " << ChannelDataVoltage[i] << "\n";
}
// Find the base line using average
double v_RMS[5];
for (int j = 0; j < 5; j++)
{
v_RMS[j] = TMath::RMS (&ChannelData[j * 200], &ChannelData[(j + 1) * 200]); // calculate RMS for 5 sections
// cout<<"v_RMS["<<j<<"] : "<<v_RMS[j]<<endl;
}
int index_v_RMS = TMath::LocMin (5, v_RMS); // locate the section for minimum RMS
double vRMS = v_RMS[index_v_RMS]; // use RMS in that section
double vmean = TMath::Mean (&ChannelData[index_v_RMS * 200], &ChannelData[(index_v_RMS + 1) * 200]); // use mean in that section
// Find Max and Min of the Channel data (Voltage)
int index_min = TMath::LocMin (1024, ChannelData); // return index of the min
double vmin = ChannelData[index_min]; // return value of the vmin
double tmin = EventTime[index_min]; // return value of the tmin
if (strcmp (ChannelHeader, "C001") == 0)
{
for (int i = 0; i < 1024; i++)
{
if (n == 1)
{
CH1event1->Fill (i, ChannelDataVoltage[i]);
}
if (n == 2)
{
CH1event2->Fill (i, ChannelDataVoltage[i]);
}
if (n == 3)
{
CH1event3->Fill (i, ChannelDataVoltage[i]);
}
if (n == 4)
{
CH1event4->Fill (i, ChannelDataVoltage[i]);
}
if (n == 5)
{
CH1event5->Fill (i, ChannelDataVoltage[i]);
}
}
// Fill in the tree for ch1
amplitude.ch1 = vmean - vmin;
peaktime.ch1 = tmin;
mean.ch1 = vmean;
rms.ch1 = vRMS;
for (int i = 0; i < 1024; i++)
{
c1[i] = ChannelDataVoltage[i];
// calculate time for this cell
for (j=0,t1[i]=0; j<i ; j++)
t1[i] += EventTime1[(j+tmpT) % 1024];
// t1[i] = i;
}
} // end of channel 1
else if (strcmp (ChannelHeader, "C002") == 0)
{
for (int i = 0; i < 1024; i++)
{
if (n == 1)
{
CH2event1->Fill (i, ChannelDataVoltage[i]);
}
if (n == 2)
{
CH2event2->Fill (i, ChannelDataVoltage[i]);
}
if (n == 3)
{
CH2event3->Fill (i, ChannelDataVoltage[i]);
}
if (n == 4)
{
CH2event4->Fill (i, ChannelDataVoltage[i]);
}
if (n == 5)
{
CH2event5->Fill (i, ChannelDataVoltage[i]);
}
}
// Fill in the tree for ch2
amplitude.ch2 = vmean - vmin;
peaktime.ch2 = tmin;
mean.ch2 = vmean;
rms.ch2 = vRMS;
for (int i = 0; i < 1024; i++)
{
c2[i] = ChannelDataVoltage[i];
// calculate time for this cell
for (j=0,t2[i]=0; j<i ; j++)
t2[i] += EventTime2[(j+tmpT) % 1024];
// t2[i] = i;
// std::cout<<"KKK "<<c1[i]<<" "<<ChannelDataVoltage[i]<<std::endl;
}
} // end of channel 2
else if (strcmp (ChannelHeader, "C003") == 0)
{
for (int i = 0; i < 1024; i++)
{
if (n == 1)
{
CH3event1->Fill (i, ChannelDataVoltage[i]);
}
if (n == 2)
{
CH3event2->Fill (i, ChannelDataVoltage[i]);
}
if (n == 3)
{
CH3event3->Fill (i, ChannelDataVoltage[i]);
}
if (n == 4)
{
CH3event4->Fill (i, ChannelDataVoltage[i]);
}
if (n == 5)
{
CH3event5->Fill (i, ChannelDataVoltage[i]);
}
}
// Fill in the tree for ch3
amplitude.ch3 = vmean - vmin;
peaktime.ch3 = tmin;
mean.ch3 = vmean;
rms.ch3 = vRMS;
for (int i = 0; i < 1024; i++)
{
c3[i] = ChannelDataVoltage[i];
// calculate time for this cell
for (j=0,t3[i]=0; j<i ; j++)
t3[i] += EventTime3[(j+tmpT) % 1024];
// t3[i] = i;
// std::cout<<"KKK "<<c1[i]<<" "<<ChannelDataVoltage[i]<<std::endl;
}
} // end of channel 3
else if (strcmp (ChannelHeader, "C004") == 0)
{
for (int i = 0; i < 1024; i++)
{
if (n == 1)
{
CH4event1->Fill (i, ChannelDataVoltage[i]);
}
if (n == 2)
{
CH4event2->Fill (i, ChannelDataVoltage[i]);
}
if (n == 3)
{
CH4event3->Fill (i, ChannelDataVoltage[i]);
}
if (n == 4)
{
CH4event4->Fill (i, ChannelDataVoltage[i]);
}
if (n == 5)
{
CH4event5->Fill (i, ChannelDataVoltage[i]);
}
}
// Fill in the tree for ch4
amplitude.ch4 = vmean - vmin;
peaktime.ch4 = tmin;
mean.ch4 = vmean;
rms.ch4 = vRMS;
for (int i = 0; i < 1024; i++)
{
c4[i] = ChannelDataVoltage[i];
// calculate time for this cell
for (j=0,t4[i]=0; j<i ; j++)
t4[i] += EventTime4[(j+tmpT) % 1024];
// t4[i] = i;
// std::cout<<"KKK "<<c1[i]<<" "<<ChannelDataVoltage[i]<<std::endl;
}
} // end of channel 4
//----------------------------------------------------------------------
// align cell #0 of all channels; this is the first sample in the scope;
//this is the only time the signals have the same absolute time;
//-----------------------------------------------------------------------
float time1_0 = t1[(1024-tcell) % 1024];//get time of cell#0 for ch1
float time2_0 = t2[(1024-tcell) % 1024];//get time of cell#0 for ch1
float time3_0 = t3[(1024-tcell) % 1024];//get time of cell#0 for ch1
float time4_0 = t4[(1024-tcell) % 1024];//get time of cell#0 for ch1
for (int i=0 ; i<1024 ; i++)
{
t2[i] -= (time2_0-time1_0);
t3[i] -= (time3_0-time1_0);
t4[i] -= (time4_0-time1_0);
}
} // end of channel loop
tree->Fill();//fill the tree event by event
treeOut->Fill();//Fill new tree output
if (file.eof ())
{
cout << ">> Reach End of the file .... " << endl;
cout << ">> Total event no." << n << endl;
endoffile = true;
break;
}
} // end of event loop
// tree->Print ();
cout << "The tree was saved." << endl;
treefile->Write ();
treefile->Close ();
cout << "The treefile was saved." << endl;
file.close ();
// ofile1.close ();
// ofile2.close ();
// ofile3.close ();
// ofile4.close ();
return 0;
}