forked from wwMark/meshgraphnets
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcfd_eval.py
68 lines (57 loc) · 2.57 KB
/
cfd_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# Lint as: python3
# pylint: disable=g-bad-file-header
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Functions to build evaluation metrics for CFD data."""
import torch
import common
device = torch.device('cuda')
def _rollout(model, initial_state, num_steps):
"""Rolls out a model trajectory."""
node_type = initial_state['node_type']
mask = torch.logical_or(torch.eq(node_type[:, 0], torch.tensor([common.NodeType.NORMAL.value], device=device)),
torch.eq(node_type[:, 0], torch.tensor([common.NodeType.OUTFLOW.value], device=device)))
mask = torch.stack((mask, mask), dim=1)
def step_fn(velocity, trajectory):
with torch.no_grad():
prediction = model({**initial_state,
'velocity': velocity}, is_training=False)
# don't update boundary nodes
next_velocity = torch.where(mask, torch.squeeze(prediction), torch.squeeze(velocity))
trajectory.append(velocity)
return next_velocity, trajectory
velocity = torch.squeeze(initial_state['velocity'], 0)
trajectory = []
for step in range(num_steps):
velocity, trajectory = step_fn(velocity, trajectory)
return torch.stack(trajectory)
def evaluate(model, trajectory):
"""Performs model rollouts and create stats."""
initial_state = {k: torch.squeeze(v, 0)[0] for k, v in trajectory.items()}
num_steps = trajectory['cells'].shape[0]
prediction = _rollout(model, initial_state, num_steps)
'''
error = tf.reduce_mean((prediction - inputs['velocity'])**2, axis=-1)
scalars = {'mse_%d_steps' % horizon: tf.reduce_mean(error[1:horizon+1])
for horizon in [1, 10, 20, 50, 100, 200]}
'''
scalars = None
traj_ops = {
'faces': trajectory['cells'],
'mesh_pos': trajectory['mesh_pos'],
'gt_velocity': trajectory['velocity'],
'pred_velocity': prediction
}
return scalars, traj_ops