forked from YahooArchive/crow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_queries.py
72 lines (57 loc) · 2.94 KB
/
extract_queries.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# Copyright 2015, Yahoo Inc.
# Licensed under the terms of the Apache License, Version 2.0. See the LICENSE file associated with the project for terms.
import os
import glob
import numpy as np
from PIL import Image
import caffe
from extract_features import format_img_for_vgg, extract_raw_features
def query_images(groundtruth_dir, image_dir, dataset, cropped=True):
"""
Extract features from the Oxford or Paris dataset.
:param str groundtruth_dir:
the directory of the groundtruth files (which includes the query files)
:param str image_dir:
the directory of dataset images
:param str dataset:
the name of the dataset, either 'oxford' or 'paris'
:param bool cropped:
flag to optionally disable cropping
:yields Image img:
the Image object
:yields str query_name:
the name of the query
"""
for f in glob.iglob(os.path.join(groundtruth_dir, '*_query.txt')):
query_name = os.path.splitext(os.path.basename(f))[0].replace('_query', '')
img_name, x, y, w, h = open(f).read().strip().split(' ')
if dataset == 'oxford':
img_name = img_name.replace('oxc1_', '')
img = Image.open(os.path.join(image_dir, '%s.jpg' % img_name))
if cropped:
x, y, w, h = map(float, (x, y, w, h))
box = map(lambda d: int(round(d)), (x, y, x + w, y + h))
img = img.crop(box)
yield img, query_name
if __name__ == '__main__':
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument('--dataset', dest='dataset', type=str, required=True, help='dataset to extract queries for')
parser.add_argument('--images', dest='images', type=str, default='data/', help='directory containing image files')
parser.add_argument('--groundtruth', dest='groundtruth', type=str, default='groundtruth/', help='directory containing groundtruth files')
parser.add_argument('--out', dest='out', type=str, default='pool5_queries/', help='path to save output')
parser.add_argument('--layer', dest='layer', type=str, default='pool5', help='model layer to extract')
parser.add_argument('--prototxt', dest='prototxt', type=str, default='vgg/VGG_ILSVRC_16_pool5.prototxt', help='path to prototxt')
parser.add_argument('--caffemodel', dest='caffemodel', type=str, default='vgg/VGG_ILSVRC_16_layers.caffemodel', help='path to model params')
args = parser.parse_args()
images_dir = os.path.join(args.dataset, args.images)
groundtruth_dir = os.path.join(args.dataset, args.groundtruth)
out_dir = os.path.join(args.dataset, args.out)
# Load networks
net = caffe.Net(args.prototxt, args.caffemodel, caffe.TEST)
if not os.path.exists(out_dir):
os.makedirs(out_dir)
for img, name in query_images(groundtruth_dir, images_dir, args.dataset):
d = format_img_for_vgg(img)
X = extract_raw_features(net, args.layer, d)
np.save(os.path.join(out_dir, '%s' % name), X)