This repository contains the code for the following manuscript:
A Large-scale Synthetic Pathological Dataset for Deep Learning-enabled Segmentation of Breast Cancer
Please cite our paper if you use the SNOW dataset for any purpose.
@article{ding2023large,
title={A large-scale synthetic pathological dataset for deep learning-enabled segmentation of breast cancer},
author={Ding, Kexin and Zhou, Mu and Wang, He and Gevaert, Olivier and Metaxas, Dimitris and Zhang, Shaoting},
journal={Scientific Data},
volume={10},
number={1},
pages={231},
year={2023},
publisher={Nature Publishing Group UK London}
}
SNOW dataset is uploaded to https://zenodo.org/record/6633721#.YuE33OzMJhE
Pytorch 1.6.0
Torchvision 0.7.0
segmentation-models-pytorch 0.2.1
Pillow 6.2.0
numpy 1.16.4
pandas 0.25.1
scikit-image 0.15.0
scikit-learn 0.21.3
Pillow 6.2.0
h5py 2.8.0
https://github.com/NVlabs/stylegan2-ada-pytorch
https://github.com/vqdang/hover_net
Using the code
CUDA_VISIBLE_DEVICES=1,2 python 1. self_training_teacher_train_val.py
Note: please set supervised = False
for training teacher model under semi-supervised training. Otherwise, the code is used for supervised training experiments in Table 2.
Using the code
CUDA_VISIBLE_DEVICES=1,2 python 2. self_training_student_train_val.py
Using the code
python 3. evaluation.py