@@ -9,122 +9,106 @@ use crate::{BytePos, SpanData};
99use crate :: hygiene:: SyntaxContext ;
1010
1111use rustc_data_structures:: fx:: FxHashMap ;
12- use std:: hash:: { Hash , Hasher } ;
1312
1413/// A compressed span.
15- /// Contains either fields of `SpanData` inline if they are small, or index into span interner.
16- /// The primary goal of `Span` is to be as small as possible and fit into other structures
17- /// (that's why it uses `packed` as well). Decoding speed is the second priority.
18- /// See `SpanData` for the info on span fields in decoded representation.
19- #[ repr( packed) ]
20- pub struct Span ( u32 ) ;
21-
22- impl Copy for Span { }
23- impl Clone for Span {
24- #[ inline]
25- fn clone ( & self ) -> Span {
26- * self
27- }
28- }
29- impl PartialEq for Span {
30- #[ inline]
31- fn eq ( & self , other : & Span ) -> bool {
32- let a = self . 0 ;
33- let b = other. 0 ;
34- a == b
35- }
36- }
37- impl Eq for Span { }
38- impl Hash for Span {
39- #[ inline]
40- fn hash < H : Hasher > ( & self , state : & mut H ) {
41- let a = self . 0 ;
42- a. hash ( state)
43- }
14+ ///
15+ /// `SpanData` is 12 bytes, which is a bit too big to stick everywhere. `Span`
16+ /// is a form that only takes up 8 bytes, with less space for the length and
17+ /// context. The vast majority (99.9%+) of `SpanData` instances will fit within
18+ /// those 8 bytes; any `SpanData` whose fields don't fit into a `Span` are
19+ /// stored in a separate interner table, and the `Span` will index into that
20+ /// table. Interning is rare enough that the cost is low, but common enough
21+ /// that the code is exercised regularly.
22+ ///
23+ /// An earlier version of this code used only 4 bytes for `Span`, but that was
24+ /// slower because only 80--90% of spans could be stored inline (even less in
25+ /// very large crates) and so the interner was used a lot more.
26+ ///
27+ /// Inline (compressed) format:
28+ /// - `span.base_or_index == span_data.lo`
29+ /// - `span.len_or_tag == len == span_data.hi - span_data.lo` (must be `<= MAX_LEN`)
30+ /// - `span.ctxt == span_data.ctxt` (must be `<= MAX_CTXT`)
31+ ///
32+ /// Interned format:
33+ /// - `span.base_or_index == index` (indexes into the interner table)
34+ /// - `span.len_or_tag == LEN_TAG` (high bit set, all other bits are zero)
35+ /// - `span.ctxt == 0`
36+ ///
37+ /// The inline form uses 0 for the tag value (rather than 1) so that we don't
38+ /// need to mask out the tag bit when getting the length, and so that the
39+ /// dummy span can be all zeroes.
40+ ///
41+ /// Notes about the choice of field sizes:
42+ /// - `base` is 32 bits in both `Span` and `SpanData`, which means that `base`
43+ /// values never cause interning. The number of bits needed for `base`
44+ /// depends on the crate size. 32 bits allows up to 4 GiB of code in a crate.
45+ /// `script-servo` is the largest crate in `rustc-perf`, requiring 26 bits
46+ /// for some spans.
47+ /// - `len` is 15 bits in `Span` (a u16, minus 1 bit for the tag) and 32 bits
48+ /// in `SpanData`, which means that large `len` values will cause interning.
49+ /// The number of bits needed for `len` does not depend on the crate size.
50+ /// The most common number of bits for `len` are 0--7, with a peak usually at
51+ /// 3 or 4, and then it drops off quickly from 8 onwards. 15 bits is enough
52+ /// for 99.99%+ of cases, but larger values (sometimes 20+ bits) might occur
53+ /// dozens of times in a typical crate.
54+ /// - `ctxt` is 16 bits in `Span` and 32 bits in `SpanData`, which means that
55+ /// large `ctxt` values will cause interning. The number of bits needed for
56+ /// `ctxt` values depend partly on the crate size and partly on the form of
57+ /// the code. No crates in `rustc-perf` need more than 15 bits for `ctxt`,
58+ /// but larger crates might need more than 16 bits.
59+ ///
60+ #[ derive( Clone , Copy , Eq , PartialEq , Hash ) ]
61+ pub struct Span {
62+ base_or_index : u32 ,
63+ len_or_tag : u16 ,
64+ ctxt_or_zero : u16
4465}
4566
67+ const LEN_TAG : u16 = 0b1000_0000_0000_0000 ;
68+ const MAX_LEN : u32 = 0b0111_1111_1111_1111 ;
69+ const MAX_CTXT : u32 = 0b1111_1111_1111_1111 ;
70+
4671/// Dummy span, both position and length are zero, syntax context is zero as well.
47- /// This span is kept inline and encoded with format 0.
48- pub const DUMMY_SP : Span = Span ( 0 ) ;
72+ pub const DUMMY_SP : Span = Span { base_or_index : 0 , len_or_tag : 0 , ctxt_or_zero : 0 } ;
4973
5074impl Span {
5175 #[ inline]
52- pub fn new ( lo : BytePos , hi : BytePos , ctxt : SyntaxContext ) -> Self {
53- encode ( & match lo <= hi {
54- true => SpanData { lo, hi, ctxt } ,
55- false => SpanData { lo : hi, hi : lo, ctxt } ,
56- } )
76+ pub fn new ( mut lo : BytePos , mut hi : BytePos , ctxt : SyntaxContext ) -> Self {
77+ if lo > hi {
78+ std:: mem:: swap ( & mut lo, & mut hi) ;
79+ }
80+
81+ let ( base, len, ctxt2) = ( lo. 0 , hi. 0 - lo. 0 , ctxt. as_u32 ( ) ) ;
82+
83+ if len <= MAX_LEN && ctxt2 <= MAX_CTXT {
84+ // Inline format.
85+ Span { base_or_index : base, len_or_tag : len as u16 , ctxt_or_zero : ctxt2 as u16 }
86+ } else {
87+ // Interned format.
88+ let index = with_span_interner ( |interner| interner. intern ( & SpanData { lo, hi, ctxt } ) ) ;
89+ Span { base_or_index : index, len_or_tag : LEN_TAG , ctxt_or_zero : 0 }
90+ }
5791 }
5892
5993 #[ inline]
6094 pub fn data ( self ) -> SpanData {
61- decode ( self )
95+ if self . len_or_tag != LEN_TAG {
96+ // Inline format.
97+ debug_assert ! ( self . len_or_tag as u32 <= MAX_LEN ) ;
98+ SpanData {
99+ lo : BytePos ( self . base_or_index ) ,
100+ hi : BytePos ( self . base_or_index + self . len_or_tag as u32 ) ,
101+ ctxt : SyntaxContext :: from_u32 ( self . ctxt_or_zero as u32 ) ,
102+ }
103+ } else {
104+ // Interned format.
105+ debug_assert ! ( self . ctxt_or_zero == 0 ) ;
106+ let index = self . base_or_index ;
107+ with_span_interner ( |interner| * interner. get ( index) )
108+ }
62109 }
63110}
64111
65- // Tags
66- const TAG_INLINE : u32 = 0 ;
67- const TAG_INTERNED : u32 = 1 ;
68- const TAG_MASK : u32 = 1 ;
69-
70- // Fields indexes
71- const BASE_INDEX : usize = 0 ;
72- const LEN_INDEX : usize = 1 ;
73- const CTXT_INDEX : usize = 2 ;
74-
75- // Tag = 0, inline format.
76- // -------------------------------------------------------------
77- // | base 31:7 | len 6:1 | ctxt (currently 0 bits) | tag 0:0 |
78- // -------------------------------------------------------------
79- // Since there are zero bits for ctxt, only SpanData with a 0 SyntaxContext
80- // can be inline.
81- const INLINE_SIZES : [ u32 ; 3 ] = [ 25 , 6 , 0 ] ;
82- const INLINE_OFFSETS : [ u32 ; 3 ] = [ 7 , 1 , 1 ] ;
83-
84- // Tag = 1, interned format.
85- // ------------------------
86- // | index 31:1 | tag 0:0 |
87- // ------------------------
88- const INTERNED_INDEX_SIZE : u32 = 31 ;
89- const INTERNED_INDEX_OFFSET : u32 = 1 ;
90-
91- #[ inline]
92- fn encode ( sd : & SpanData ) -> Span {
93- let ( base, len, ctxt) = ( sd. lo . 0 , sd. hi . 0 - sd. lo . 0 , sd. ctxt . as_u32 ( ) ) ;
94-
95- let val = if ( base >> INLINE_SIZES [ BASE_INDEX ] ) == 0 &&
96- ( len >> INLINE_SIZES [ LEN_INDEX ] ) == 0 &&
97- ( ctxt >> INLINE_SIZES [ CTXT_INDEX ] ) == 0 {
98- ( base << INLINE_OFFSETS [ BASE_INDEX ] ) | ( len << INLINE_OFFSETS [ LEN_INDEX ] ) |
99- ( ctxt << INLINE_OFFSETS [ CTXT_INDEX ] ) | TAG_INLINE
100- } else {
101- let index = with_span_interner ( |interner| interner. intern ( sd) ) ;
102- ( index << INTERNED_INDEX_OFFSET ) | TAG_INTERNED
103- } ;
104- Span ( val)
105- }
106-
107- #[ inline]
108- fn decode ( span : Span ) -> SpanData {
109- let val = span. 0 ;
110-
111- // Extract a field at position `pos` having size `size`.
112- let extract = |pos : u32 , size : u32 | {
113- let mask = ( ( !0u32 ) as u64 >> ( 32 - size) ) as u32 ; // Can't shift u32 by 32
114- ( val >> pos) & mask
115- } ;
116-
117- let ( base, len, ctxt) = if val & TAG_MASK == TAG_INLINE { (
118- extract ( INLINE_OFFSETS [ BASE_INDEX ] , INLINE_SIZES [ BASE_INDEX ] ) ,
119- extract ( INLINE_OFFSETS [ LEN_INDEX ] , INLINE_SIZES [ LEN_INDEX ] ) ,
120- extract ( INLINE_OFFSETS [ CTXT_INDEX ] , INLINE_SIZES [ CTXT_INDEX ] ) ,
121- ) } else {
122- let index = extract ( INTERNED_INDEX_OFFSET , INTERNED_INDEX_SIZE ) ;
123- return with_span_interner ( |interner| * interner. get ( index) ) ;
124- } ;
125- SpanData { lo : BytePos ( base) , hi : BytePos ( base + len) , ctxt : SyntaxContext :: from_u32 ( ctxt) }
126- }
127-
128112#[ derive( Default ) ]
129113pub struct SpanInterner {
130114 spans : FxHashMap < SpanData , u32 > ,
0 commit comments