-
Notifications
You must be signed in to change notification settings - Fork 3.6k
/
Copy pathCubicRealPolynomial.js
238 lines (205 loc) · 6.55 KB
/
CubicRealPolynomial.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import DeveloperError from "./DeveloperError.js";
import QuadraticRealPolynomial from "./QuadraticRealPolynomial.js";
/**
* Defines functions for 3rd order polynomial functions of one variable with only real coefficients.
*
* @namespace CubicRealPolynomial
*/
var CubicRealPolynomial = {};
/**
* Provides the discriminant of the cubic equation from the supplied coefficients.
*
* @param {Number} a The coefficient of the 3rd order monomial.
* @param {Number} b The coefficient of the 2nd order monomial.
* @param {Number} c The coefficient of the 1st order monomial.
* @param {Number} d The coefficient of the 0th order monomial.
* @returns {Number} The value of the discriminant.
*/
CubicRealPolynomial.computeDiscriminant = function (a, b, c, d) {
//>>includeStart('debug', pragmas.debug);
if (typeof a !== "number") {
throw new DeveloperError("a is a required number.");
}
if (typeof b !== "number") {
throw new DeveloperError("b is a required number.");
}
if (typeof c !== "number") {
throw new DeveloperError("c is a required number.");
}
if (typeof d !== "number") {
throw new DeveloperError("d is a required number.");
}
//>>includeEnd('debug');
var a2 = a * a;
var b2 = b * b;
var c2 = c * c;
var d2 = d * d;
var discriminant =
18.0 * a * b * c * d +
b2 * c2 -
27.0 * a2 * d2 -
4.0 * (a * c2 * c + b2 * b * d);
return discriminant;
};
function computeRealRoots(a, b, c, d) {
var A = a;
var B = b / 3.0;
var C = c / 3.0;
var D = d;
var AC = A * C;
var BD = B * D;
var B2 = B * B;
var C2 = C * C;
var delta1 = A * C - B2;
var delta2 = A * D - B * C;
var delta3 = B * D - C2;
var discriminant = 4.0 * delta1 * delta3 - delta2 * delta2;
var temp;
var temp1;
if (discriminant < 0.0) {
var ABar;
var CBar;
var DBar;
if (B2 * BD >= AC * C2) {
ABar = A;
CBar = delta1;
DBar = -2.0 * B * delta1 + A * delta2;
} else {
ABar = D;
CBar = delta3;
DBar = -D * delta2 + 2.0 * C * delta3;
}
var s = DBar < 0.0 ? -1.0 : 1.0; // This is not Math.Sign()!
var temp0 = -s * Math.abs(ABar) * Math.sqrt(-discriminant);
temp1 = -DBar + temp0;
var x = temp1 / 2.0;
var p = x < 0.0 ? -Math.pow(-x, 1.0 / 3.0) : Math.pow(x, 1.0 / 3.0);
var q = temp1 === temp0 ? -p : -CBar / p;
temp = CBar <= 0.0 ? p + q : -DBar / (p * p + q * q + CBar);
if (B2 * BD >= AC * C2) {
return [(temp - B) / A];
}
return [-D / (temp + C)];
}
var CBarA = delta1;
var DBarA = -2.0 * B * delta1 + A * delta2;
var CBarD = delta3;
var DBarD = -D * delta2 + 2.0 * C * delta3;
var squareRootOfDiscriminant = Math.sqrt(discriminant);
var halfSquareRootOf3 = Math.sqrt(3.0) / 2.0;
var theta = Math.abs(Math.atan2(A * squareRootOfDiscriminant, -DBarA) / 3.0);
temp = 2.0 * Math.sqrt(-CBarA);
var cosine = Math.cos(theta);
temp1 = temp * cosine;
var temp3 = temp * (-cosine / 2.0 - halfSquareRootOf3 * Math.sin(theta));
var numeratorLarge = temp1 + temp3 > 2.0 * B ? temp1 - B : temp3 - B;
var denominatorLarge = A;
var root1 = numeratorLarge / denominatorLarge;
theta = Math.abs(Math.atan2(D * squareRootOfDiscriminant, -DBarD) / 3.0);
temp = 2.0 * Math.sqrt(-CBarD);
cosine = Math.cos(theta);
temp1 = temp * cosine;
temp3 = temp * (-cosine / 2.0 - halfSquareRootOf3 * Math.sin(theta));
var numeratorSmall = -D;
var denominatorSmall = temp1 + temp3 < 2.0 * C ? temp1 + C : temp3 + C;
var root3 = numeratorSmall / denominatorSmall;
var E = denominatorLarge * denominatorSmall;
var F =
-numeratorLarge * denominatorSmall - denominatorLarge * numeratorSmall;
var G = numeratorLarge * numeratorSmall;
var root2 = (C * F - B * G) / (-B * F + C * E);
if (root1 <= root2) {
if (root1 <= root3) {
if (root2 <= root3) {
return [root1, root2, root3];
}
return [root1, root3, root2];
}
return [root3, root1, root2];
}
if (root1 <= root3) {
return [root2, root1, root3];
}
if (root2 <= root3) {
return [root2, root3, root1];
}
return [root3, root2, root1];
}
/**
* Provides the real valued roots of the cubic polynomial with the provided coefficients.
*
* @param {Number} a The coefficient of the 3rd order monomial.
* @param {Number} b The coefficient of the 2nd order monomial.
* @param {Number} c The coefficient of the 1st order monomial.
* @param {Number} d The coefficient of the 0th order monomial.
* @returns {Number[]} The real valued roots.
*/
CubicRealPolynomial.computeRealRoots = function (a, b, c, d) {
//>>includeStart('debug', pragmas.debug);
if (typeof a !== "number") {
throw new DeveloperError("a is a required number.");
}
if (typeof b !== "number") {
throw new DeveloperError("b is a required number.");
}
if (typeof c !== "number") {
throw new DeveloperError("c is a required number.");
}
if (typeof d !== "number") {
throw new DeveloperError("d is a required number.");
}
//>>includeEnd('debug');
var roots;
var ratio;
if (a === 0.0) {
// Quadratic function: b * x^2 + c * x + d = 0.
return QuadraticRealPolynomial.computeRealRoots(b, c, d);
} else if (b === 0.0) {
if (c === 0.0) {
if (d === 0.0) {
// 3rd order monomial: a * x^3 = 0.
return [0.0, 0.0, 0.0];
}
// a * x^3 + d = 0
ratio = -d / a;
var root =
ratio < 0.0 ? -Math.pow(-ratio, 1.0 / 3.0) : Math.pow(ratio, 1.0 / 3.0);
return [root, root, root];
} else if (d === 0.0) {
// x * (a * x^2 + c) = 0.
roots = QuadraticRealPolynomial.computeRealRoots(a, 0, c);
// Return the roots in ascending order.
if (roots.Length === 0) {
return [0.0];
}
return [roots[0], 0.0, roots[1]];
}
// Deflated cubic polynomial: a * x^3 + c * x + d= 0.
return computeRealRoots(a, 0, c, d);
} else if (c === 0.0) {
if (d === 0.0) {
// x^2 * (a * x + b) = 0.
ratio = -b / a;
if (ratio < 0.0) {
return [ratio, 0.0, 0.0];
}
return [0.0, 0.0, ratio];
}
// a * x^3 + b * x^2 + d = 0.
return computeRealRoots(a, b, 0, d);
} else if (d === 0.0) {
// x * (a * x^2 + b * x + c) = 0
roots = QuadraticRealPolynomial.computeRealRoots(a, b, c);
// Return the roots in ascending order.
if (roots.length === 0) {
return [0.0];
} else if (roots[1] <= 0.0) {
return [roots[0], roots[1], 0.0];
} else if (roots[0] >= 0.0) {
return [0.0, roots[0], roots[1]];
}
return [roots[0], 0.0, roots[1]];
}
return computeRealRoots(a, b, c, d);
};
export default CubicRealPolynomial;