- ggrb_int_cpl:
$cpl(\alpha,E_c,E_\mathrm{min},E_\mathrm{max}) = -E_c^2 \cdot (\Gamma(2 + \alpha, E_\mathrm{max}/E_c) - \Gamma(2 + \alpha, E_\mathrm{min}/E_c)) \cdot \Gamma(2 + \alpha)$ - cpl:
$N \cdot (E/100)^\alpha \cdot \mathrm{e}^{-E/E_C}$ - cpl_indi:
$K \cdot (E/100)^\alpha \cdot \mathrm{e}^{-E/E_C}$ - cpl_flux_integrand:
$x \cdot$ cpl_indi$(x,\theta)$ - differential_flux:
$\partial_E F(E,N,E_C,\alpha) = \mathrm{cpl}(E,N,E_C,\alpha)$ - integral_flux (Simpson integral):
$F_\mathrm{tot} = E_\text{bounds,add} \cdot (\partial_E F(E_\text{bounds,lo}, N, E_C, \alpha) + 4 \cdot \partial_E F(E_\text{bounds,half}, N, E_C, \alpha) + \partial_E F(E_\text{bounds,hi}, N, E_C, \alpha))$
- background_model:
$b = 0.5 \cdot \sqrt{MB^2 - 2 \sigma^2 \cdot (MB - 2 N_\mathrm{obs}) + \sigma^2} + N_\mathrm{back} - N_\mathrm{exp} - \sigma^2$ - pgstat:
$PG(idx \neq 0) = -\frac{(b - N_\mathrm{back})^2}{2 \sigma^2} + N_\mathrm{obs} \cdot \log(b + N_\mathrm{exp}) - b - N_\mathrm{exp} + \log\Gamma(idx + 1) - 0.5 \cdot \log(2\pi) - \log(\sigma)$
$PG(idx=0) = N_\mathrm{obs} \log(N_\mathrm{exp}) - N_\mathrm{exp} + \log\Gamma(idx + 1)$
- partial_log_like:
$N_\mathrm{exp}^i = R^{ij} \cdot F_{\mathrm{tot},j} \cdot t_\mathrm{exposure}$
$L = \sum_i PG(N_\mathrm{obs}^i,N_\mathrm{back}^i,\sigma^i,N_\mathrm{exp}^i,idx_0^i,idx^i)$
- ggrb_into_pl:
$pl(\alpha,\beta,E_c,E_\mathrm{min},E_\mathrm{max}) = \begin{cases} ((\alpha - \beta)^{\alpha-\beta} \cdot \frac{\mathrm{e}^{\beta-\alpha}}{E_c^\beta})/(2\beta) \cdot (E_\mathrm{max}^{2 + \beta} - E_\mathrm{min}^{2 + \beta}), & \beta \neq 2 \ (\alpha - \beta)^{\alpha-\beta} \cdot \frac{\mathrm{e}^{\beta-\alpha}}{E_c^\beta} \cdot \log\frac{E_\mathrm{max}}{E_\mathrm{min}}, & \mathrm{else} \end{cases}$ - ggrb_int_cpl:
$cpl(\alpha,E_c,E_\mathrm{min},E_\mathrm{max}) = -E_c^2 \cdot (\Gamma(2 + \alpha, E_\mathrm{max}/E_c) - \Gamma(2 + \alpha, E_\mathrm{min}/E_c)) \cdot \Gamma(2 + \alpha)$ - band_precalculation:
norm $= \begin{cases} F / (c(\alpha,E_c,E_\mathrm{min},E_\mathrm{split}) + p(\alpha,\beta,E_c,E_\mathrm{split},E_\mathrm{max})), & E_\mathrm{min} \leq E_\mathrm{split} \leq E_\mathrm{max} \ F / pl(\alpha,\beta,E_c,E_\mathrm{split},E_\mathrm{max}), & E_\mathrm{split} < E_\mathrm{min} \end{cases}$
$pre = (\alpha-\beta)^{\alpha-\beta} \cdot \mathrm{e}^{\beta-\alpha}$ - differential_flux:
$\partial_E F^i = \mathrm{norm} \cdot o^i$
$o^i = \begin{cases} (E/E_c)^\alpha \cdot \mathrm{e}^{-E/E_c}, & E < E\mathrm{split} \ pre \cdot (E/E_c)^\beta, & \mathrm{else} \end{cases}$ - integral_flux (Simpson integral):
$F = E_\mathrm{bounds,add} \cdot (\partial_E F(E_\mathrm{bounds,lo},\dots) + 4 \cdot \partial_t F(E_\mathrm{bounds,half},\dots) + \partial_t F(E_\mathrm{bounds,hi},\dots))$
- data: usual
- transformed data:
- ebounds_half
- ebounds_add
$N_\text{total channels}$ - all_N
- keV to erg
- erg to keV
$E_\mathrm{min}$ $E_\mathrm{max}$ $x_r$ $x_i$
- parameters:
$\alpha$ -
$\log E_C$ (cut-off energy) $\log F$
- transformed parameters:
$E_C$ $F$ $K = F / \int_{10}^{1000} dx\ x \cdot K \cdot (E/100)^\alpha \cdot \mathrm{e}^{-E/100}$
- model:
$\log F \sim \mathcal{N}(0,1)$ $\log F_\sigma \sim \mathcal{N}(0,1)$ $\alpha \sim \mathcal{N}(-1,0.5)$ $\log E_C \sim \mathcal{N}(2,1)$ - target: sums over partial_log_like
- data:
$N_\mathrm{intervals}$ $N_\mathrm{chan,max}$ $N_\mathrm{echan,max}$ $N_\mathrm{det}$ $N_\mathrm{chan}$ $N_\mathrm{echan}$ - grb_id
$N_\mathrm{GRB}$ - ebounds_hi
- ebounds_lo
$N_\mathrm{obs}$ $N_\mathrm{bg}$ - BG errors
- idx_background_zero
- idx_background_nonzero
$N_\mathrm{BG,zero}$ $N_\mathrm{BG,nonzero}$ - exposure
- response
- mask
$N_\text{channels used}$ $dl$ $z$ $N_\text{gen spectra}$ $E_\mathrm{model}$ $N_\mathrm{correlation}$ - model_correlation
- transformed data:
- ebounds_half
- ebounds_add
$N_\text{total channels}$
- parameters:
$\alpha$ $\beta$ $\log E_\mathrm{peak}$ $\gamma$ $\delta$
- transformed parameters:
$\gamma$ $\delta$ -
$E_\mathrm{peak}$ , $\log L$ $L$ - expected model counts
- model:
$\alpha \sim \mathcal{N}(-1,0.5)$ $\beta \sim \mathcal{N}(-3,1)$ $\log E_\mathrm{peak} \sim \mathcal{N}(2,1)$ $\gamma_\mu \sim \mathcal{N}(3,1)$ $\delta_\mu \sim \mathcal{N}(-4,4)$ $\gamma_\mathrm{off} \sim \mathcal{N}(0,1)$ $\delta_\mathrm{off} \sim \mathcal{N}(0,1)$ $\gamma_\sigma \sim \mathcal{N}(0,5)$ $\delta_\sigma \sim \mathcal{N}(0,5)$ - log_like / target: ???
- generated quantities: ???
- data: usual
- transformed data:
- ebounds_half
- ebounds_add
$N_\text{total channels}$ - log_zp1_grb
- log_dl2_grb
- parameters:
$\alpha$ $\beta$ $\log E_\mathrm{peak}$ $\gamma$ $\delta$ $\phi$
- transformed parameters:
$\gamma$ $\delta$ $\phi$ $E_\mathrm{peak}$ $\log L$ $L$ - expected model counts
- model:
$\alpha \sim \mathcal{N}(-1,0.5)$ $\beta \sim \mathcal{N}(-3,1)$ $\log E_\mathrm{peak} \sim \mathcal{N}(2,1)$ $\gamma_\mu \sim \mathcal{N}(0,5)$ $\phi_\mu \sim \mathcal{N}(0,5)$ $\delta_\mu \sim \mathcal{N}(0,4)$ $\gamma_\mathrm{off} \sim \mathcal{N}(0,1)$ $\phi_\mathrm{off} \sim \mathcal{N}(0,1)$ $\delta_\mathrm{off} \sim \mathcal{N}(0,1)$ $\gamma_\sigma \sim \mathcal{N}(0,5)$ $\phi_\sigma \sim \mathcal{N}(0,5)$ $\delta_\sigma \sim \mathcal{N}(0,5)$ - log_like / target: ???
- generated quantities: ???
- data: usual
- transformed data:
- ebounds_half
- ebounds_add
$N_\text{total channels}$
- parameters:
$\alpha$ $\beta$ $E_\mathrm{peak}$ $\gamma$ $\delta$
- transformed parameters:
$\gamma$ $\delta$ $\log L$ - expected model counts
- model:
$\alpha \sim \mathcal{N}(-1,0.5)$ $\beta \sim \mathcal{N}(-3,1)$ $E_\mathrm{peak} \sim \mathcal{N}(500,500)$ $\gamma_\mu \sim \mathcal{N}(3,1)$ $\delta_\mu \sim \mathcal{N}(-4,4)$ $\gamma_\mathrm{off} \sim \mathcal{N}(0,1)$ $\delta_\mathrm{off} \sim \mathcal{N}(0,1)$ $\gamma_\sigma \sim \mathcal{N}(0,5)$ $\delta_\sigma \sim \mathcal{N}(0,5)$ - log_like / target: ???
- generated quantities: ???
- data: usual
- transformed data:
- ebounds_half
- ebounds_add
$N_\text{total channels}$ - log_zp1_grb
- log_dl2_grb
- parameters:
$\alpha$ $\beta$ $E_\mathrm{peak}$ $\gamma$ $\delta$
- transformed parameters:
$\gamma$ $\delta$ $\log L$ - expected model counts
- model:
$\alpha \sim \mathcal{N}(-1,0.5)$ $\beta \sim \mathcal{N}(-3,1)$ $\log E_\mathrm{peak} \sim \mathcal{N}(2,1)$ $\gamma_\mu \sim \mathcal{N}(1.5,1)$ $\delta_\mu \sim \mathcal{N}(0,4)$ $\gamma_\mathrm{off} \sim \mathcal{N}(0,1)$ $\delta_\mathrm{off} \sim \mathcal{N}(0,1)$ $\gamma_\sigma \sim \mathcal{N}(0,5)$ $\delta_\sigma \sim \mathcal{N}(0,5)$ - log_like / target: ???
- generated quantities: ???
- data: usual
- transformed data:
- ebounds_half
- ebounds_add
- out: extract non-zero values from response matrix
- data: usual
- transformed data:
- ebounds_half
- ebounds_add
$N_\text{total channels}$
- parameters:
$\alpha$ $\beta$ $\log E_\mathrm{peak}$ $\log L$
- transformed parameters:
- expected model counts
- model:
$\alpha \sim \mathcal{N}(-1,0.5)$ $\beta \sim \mathcal{N}(-3,1)$ $\log E_\mathrm{peak} \sim \mathcal{N}(2,1)$ $\log L \sim \mathcal{N}(-6,2)$ - log_like / target: ???
- generated quantities: ???
- data: usual
- transformed data:
- ebounds_half
- ebounds_add
$N_\text{total channels}$
- parameters:
$\alpha$ $\beta$ $E_\mathrm{peak}$ $L$
- transformed parameters:
- expected model counts
- model:
$\alpha \sim \mathcal{N}(-1,0.5)$ $\beta \sim \mathcal{N}(-3,1)$ $E_\mathrm{peak} \sim \mathcal{N}(500,500)$ $L \sim \mathcal{N}(10^{-6},10^{-2})$ - log_like / target: ???
- generated quantities: ???
- ggrb_int_cpl:
- band_precalculation: compare!!
- data: usual
- transformed data:
- ebounds_half
- ebounds_add
$N_\text{total channels}$
- parameters:
$\alpha$ $\log E_\mathrm{peak}$ $\log L$
- transformed parameters:
$E_\mathrm{peak}$ - expected model counts
- model:
$\alpha \sim \mathcal{N}(-1,0.5)$ $\log E_\mathrm{peak} \sim \mathcal{N}(2,1)$ $\log L \sim \mathcal{N}(-7,1)$ - log_like / target: ???
- generated quantities: empty
- data: usual
- transformed data:
- ebounds_half
- ebounds_add
$N_\text{total channels}$ - log_zp1_grb
- log_dl2_grb
- parameters:
$\alpha$ $\beta$ $\log E_\mathrm{peak}$ $\log L$
- transformed parameters:
$E_\mathrm{peak}$ - expected model counts
- model:
$\alpha \sim \mathcal{N}(-1,0.5)$ $\beta \sim \mathcal{N}(-3,1)$ $\log E_\mathrm{peak} \sim \mathcal{N}(2,1)$ $\log L \sim \mathcal{N}(-7,1)$ - log_like / target: ???
- generated quantities: ???
Samples decay time, duration,
- GRBDatum: single GRB with data
- can export to: plugin, hdf5
- can read from: ogip/FITS, hdf5
- GRBInterval: time interval consisting of all the detectors
- can export to: plugin, hdf5
- can read from: dict/YAML (reads ogip/FITS), hdf5
- GRBData: all intervals from a single GRB
- can export to: plugin, hdf5
- can read from: dict/YAML (reads ogip/FITS), hdf5
- DataSet:
- can export to: plugin, hdf5, Stan dict
- can read from: dict/YAML (reads ogip/FITS), hdf5
- GRBProcessor: retrieves light curves from GRB and exports ogip
- AnalysisBuilder: imports survey and processes GRBs
- can export to: YAML
TODO
- generates data:
- defines samplers for parameters
- gets samplers from utils/aux_samplers
- observes samplers
- writes to data/single_grb.h5
- simulates single GRB to data/test_grb.h5
- simulates universe o single_grb to data/survey.h5